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Chapter 1

The Power of Grids - Closest Pair and
Smallest Enclosing Disk

The Peace of Olivia. How sweat and peaceful it sounds! There the great powers noticed for the first time that the land of the Poles
lends itself admirably to partition.

– The tin drum, Gunter Grass.

In this chapter, we are going to discuss two basic geometric algorithms. The first one, computes the closest pair
among a set of n points in linear time. This is a beautiful and surprising result that exposes the computational power of
using grids for geometric computation. Next, we discuss a simple algorithm for approximating the smallest enclosing
ball that contains k points of the input. This at first looks like a bizarre problem, but turns out to be a key ingredient to
our later discussion.

1.1 Preliminaries
For a real positive number α and a point p = (x, y) in IR2, define Gα(p) to be the grid point (bx/αcα, by/αcα). We call
α the width or sidelength of the grid Gα. Observe that Gα partitions the plane into square regions, which we call grid
cells. Formally, for any i, j ∈ Z, the intersection of the half-planes x ≥ αi, x < α(i + 1), y ≥ α j and y < α( j + 1) is said
to be a grid cell. Further we define a grid cluster as a block of 3 × 3 contiguous grid cells.

Note, that every grid cell 2 of Gα, has a unique ID; indeed, let p = (x, y) be any point in 2, and consider the pair
of integer numbers id2 = id(p) = (bx/αc , by/αc). Clearly, only points inside 2 are going to be mapped to id2. We can
use this to store a set P of points inside a grid efficiently. Indeed, given a point p, compute its id(p). We associate with
each unique id a data-structure (e.g., a linked list) that stores all the points of P falling into this grid cell (of course,
we do not maintain such data-structures for grid cells which are empty). So, once we have computed id(p), we fetch
the data structure associated with this cell, by using hashing. Namely, we store pointers to all those data-structures in
a hash table, where each such data-structure is indexed by its unique id. Since the ids are integer numbers, we can do
the hashing in constant time.

Assumption 1.1.1 Throughout the discourse, we assume that every hashing operation takes (worst case) constant
time. This is quite a reasonable assumption when true randomness is available (using for example perfect hashing
[CLRS01]).

Assumption 1.1.2 Our computation model is the unit cost RAM model, where every operation on real numbers takes
constant time, including log and b·c operations. We will (mostly) ignore numerical issues and assume exact computa-
tion.

Definition 1.1.3 For a point set P and a parameter α, the partition of P into subsets by the grid Gα, is denoted by
Gα(P). More formally, two points p, q ∈ P belong to the same set in the partition Gα(P), if both points are being
mapped to the same grid point or equivalently belong to the same grid cell; that is, id(p) = id(q).

1



CHAPTER 1. THE POWER OF GRIDS - CLOSEST PAIR AND SMALLEST ENCLOSING DISK 2

1.2 Closest Pair
We are interested in solving the following problem:

Problem 1.2.1 Given a set P of n points in the plane, find the pair of points closest to each other. Formally, return the
pair of points realizing CP(P) = min

p,q, p,q∈P
‖p − q‖.

The following is an easy standard packing argument that underlines, under various disguises, many algorithms in
Computational Geometry.

α
p

Lemma 1.2.2 Let P be a set of points contained inside a square �, such that the side-
length of � is CP(P). Then |P| ≤ 4.

Proof : Partition P into four equal squares �1, . . . ,�4, and observe that each of these squares has diameter
√

2α/2 < α,
and as such it can contain at most one of points of P; that is, the disk of radius α centered at a point p ∈ P completely
covers the subsquare containing it, see figure on the right.

Note, that the set P can have four points if it is the four corners of �.

Lemma 1.2.3 Given a set P of n points in the plane, and a distance α, one can verify in linear time, whether CP(P) <
α, CP(P) = α, or CP(P) > α.

Proof : Indeed, store the points of P in the grid Gα. For every non-empty grid cell, we maintain a linked list of the
points inside it. Thus, adding a new point p takes constant time. Specifically, compute id(p), check if id(p) already
appears in the hash table, if not, create a new linked list for the cell with this ID number, and store p in it. If a linked
list already exist for id(p), just add p to it. This takes O(n) time overall.

Now, if any grid cell in Gα(P) contains more than, say, 4 points of P, then it must be that the CP(P) < α, by
Lemma 1.2.2.

D
p

α

Thus, when we insert a point p, we can fetch all the points of P that
were already inserted in the cell of p, and the 8 adjacent cells (i.e., all the
points stored in the cluster of p); that is, these are the cells of the grid Gα that
intersects the disk D = disk(p, α) centered at p with radius α, see figure on
the right. If there is a point closer to p than α that was already inserted then
it must be stored in one of these 9 cells (since it must be inside D). Now,
each one of those cells must contain at most 4 points of P by Lemma 1.2.2
(otherwise, we would already have stopped since the CP(·) of the inserted
points is smaller than α). Let S be the set of all those points, and observe that
|S | ≤ 9 · 4 = O(1). Thus, we can compute, by brute force, the closest point to
p in S . This takes O(1) time. If d(p, S ) < α, we stop, otherwise, we continue
to the next point.

Overall, this takes at most linear time.
As for correctness, observe that the algorithm returns ‘CP(P) < α’ only after finding a pair of points of P with

distance smaller than α. So, assume that p and q are the pair of points of P realizing the closest pair, and ‖p − q‖ =

CP(P) < α. Clearly, when the later point (say p) is being inserted, the set S would contain q, and as such the algorithm
would stop and return ‘CP(P) < α’. Similar argumentation works for the case that CP(P) = α. Thus if the algorithm
returns ‘CP(P) > α’ it must be that CP(P) is not smaller than α or equal to it. Namely, it must be larger. Thus, the
algorithm output is correct.

Remark 1.2.4 Assume that CP(P \ {p}) ≥ α, but CP(P) < α. Furthermore, assume that we use Lemma 1.2.3 on P,
where p ∈ P is the last point to be inserted. When p is being inserted, not only we discover that CP(P) < α, but in fact,
by checking the distance of p to all the points stored in its cluster, we can compute the closest point to p in P \ {p}, and
denote this point by q. Clearly, pq is the closest pair in P, and this last insertion still takes only constant time.
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Slow algorithm. Lemma 1.2.3 provides a natural way of computing CP(P). Indeed, permute the points of P in an
arbitrary fashion, and let P = 〈p1, . . . , pn〉. Next, let αi−1 = CP({p1, . . . , pi−1}). We can check if αi < αi−1, by just
calling the algorithm of Lemma 1.2.3 on Pi and αi−1. In fact, if αi < αi−1, the algorithm of Lemma 1.2.3, would return
‘CP(Pi) < αi−1’, and the two points of Pi realizing αi.

So, consider the “good” case, where αi = αi−1; that is, the length of the shortest pair does not change when pi is
being inserted. In this case, we do not need to rebuild the data structure of Lemma 1.2.3 to store Pi = 〈p1, . . . , pi〉. We
can just reuse the data-structure from the previous iteration that was used by Pi−1 by inserting pi into it. Thus, inserting
a single point takes constant time, as long as the closest pair does not change.

Things become problematic when αi < αi−1, because then we need to rebuild the grid data structure, and reinsert
all the points of Pi = 〈p1, . . . , pi〉 into the new grid Gαi (Pi). This takes O(i) time.

In the end of this process, we output the number αn, together with the two points of P that realize the closest pair.

Observation 1.2.5 If the closest pair distance, in the sequence α1, . . . , αn, changes only t times, then the running time
of our algorithm would be O(nt + n). Naturally, t might be Ω(n), so this algorithm might take quadratic time in the
worst case.

Linear time algorithm. Surprisingly, we can speed up the above algorithm to have linear running time by spicing
it up by using randomization.

We pick a random permutation of the points of P, and let 〈p1, . . . , pn〉 be this permutation. Let α2 = ‖p1 − p2‖, and
start inserting the points into the data structure of Lemma 1.2.3. We will keep the invariant that αi would be the closest
pair distance in the set Pi, for i = 2, . . . , n.

In the ith iteration, if αi = αi−1, then this insertion takes constant time. If αi < αi−1, then we know what is the new
closest pair distance αi (see Remark 1.2.4), rebuild the grid and reinsert the i points of Pi from scratch into the grid
Gαi . This rebuilding of Gαi (Pi) takes O(i) time.

Finally, the algorithm returns the number αn and the two points of Pn realizing it, as the closest pair in P.

Lemma 1.2.6 Let t be the number of different values in the sequence α2, α3, . . . , αn. Then E[t] = O(log n). As such,
in expectation, the above algorithm rebuilds the grid O(log n) times.

Proof : For i ≥ 3, let Xi be an indicator variable that is one if and only if αi < αi−1. Observe that E[Xi] = Pr[Xi = 1]
(as Xi is an indicator variable), and t =

∑n
i=3 Xi.

To bound Pr[Xi = 1] = Pr[αi < αi−1], we (conceptually) fix the points of Pi and randomly permute them. A point
q ∈ Pi is critical, if CP(Pi \ {q}) > CP(Pi). If there are no critical points, then αi−1 = αi and then Pr[Xi = 1] = 0
(this happens, for example, if there are two pairs of points realizing the closest distance in Pi). If there is one critical
point, then Pr[Xi = 1] = 1/i, as this is the probability that this critical point would be the last point in the random
permutation of Pi.

Assume there are two critical points and let p, q be this unique pair of points of Pi realizing CP(Pi). The quantity
αi is smaller than αi−1 only if either p or q is pi. The probability for that is 2/i (i.e., the probability in a random
permutation of i objects, that one of two marked objects would be the last element in the permutation).

Observe, that there can not be more than two critical points. Indeed, if p and q are two points that realize the closest
distance, then if there is a third critical point s, then CP(Pi \ {s}) = ‖p − q‖, and hence the point s is not critical.

Thus, Pr[Xi = 1] = Pr[αi < αi−1] ≤ 2/i, and by linearity of expectations, we have that E[t] = E
[∑n

i=3 Xi

]
=∑n

i=3 E[Xi] ≤ ∑n
i=3 2/i = O(log n).

Lemma 1.2.6 implies that, in expectation, the algorithm rebuilds the grid O(log n) times. By Observation 1.2.5,
the running time of this algorithm, in expectation, is O(n log n). However, we can do better than that. Intuitively,
rebuilding the grid in early iterations of the algorithm is cheap, and only late rebuilds (when i = Ω(n)) are expensive,
but the number of such expensive rebuilds is small (in fact, in expectation it is a constant).

Theorem 1.2.7 For set P of n points in the plane, one can compute the closest pair of P in expected linear time.

Surprise in the eyes of the beholder. The reader might not be surprised at all, and might be mildly disgusted by the whole affair. In this case,
the reader should read any occurrence of “surprisingly” in the text as being “mildly disgustingly”.
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Proof : The algorithm is described above. As above, let Xi be the indicator variable which is 1 if αi , αi−1, and 0
otherwise. Clearly, the running time is proportional to

R = 1 +

n∑

i=3

(1 + Xi · i) .

Thus, the expected running time is proportional to

E[R] = E

1 +

n∑

i=3

(1 + Xi · i)
 ≤ n +

n∑

i=3

E[Xi] · i ≤ n +

n∑

i=3

i · Pr[Xi = 1]

≤ n +

n∑

i=3

i · 2
i
≤ 3n,

by linearity of expectation and since E[Xi] = Pr[Xi = 1], and since Pr[Xi = 1] ≤ 2/i (as shown in the proof of
Lemma 1.2.6). Thus, the expected running time of the algorithm is O(E[R]) = O(n).

Theorem 1.2.7 is a surprising result, since it implies that uniqueness (i.e., deciding if n real numbers are all
distinct) can be solved in linear time. Indeed, compute the distance of the closest pair of the given numbers (think
about the numbers as points on the x-axis). If this distance is zero, then clearly they are not all unique.

However, there is a lower bound of Ω(n log n) on the running time to solve uniqueness, using the comparison
model. This “reality dysfunction” can be easily explained once one realizes that the computation model of Theo-
rem 1.2.7 is considerably stronger, using hashing, randomization, and the floor function.

1.3 A Slow 2-Approximation Algorithm for the k-Enclosing Disk
For a disk D, we denote by radius(D) the radius of D. Let Dopt(P, k) be a disk of minimum radius which contains k
points of P, and let ropt(P, k) denote the radius of Dopt(P, k). For k = 2, this is equivalent to computing the closest pair
of points of P.

Lemma 1.3.1 For any point set P and α > 0, we have that if α ≤ 2ropt(P, k) then any cell of the grid Gα contains at
most 5k points; that is gdα(P) ≤ 5k.

Lemma 1.3.2 Given a set P of n points in IRd, and parameter k, one can compute, in O
(
n(n/k)d

)
deterministic time,

a ball b that contains k points of P and its radius radius(b) ≤ 2ropt(P, k), where ropt(P, k) is the radius of the smallest
ball in IRd containing k points of P.

1.4 A Linear Time 2-Approximation for the k-Enclosing Disk
Theorem 1.4.1 Given a set P of n points in the plane, and a parameter k, the algorithm algDCover computes, in
expected linear time, a radius α, such that ropt(P, k) ≤ α ≤ 2ropt(P, k), where ropt(P, k) is the minimum radius of a disk
covering k points of P.

1.5 Bibliographical notes
Our closest-pair algorithm follows Golin et al. [GRSS95]. This is in turn a simplification of a result of Rabin [Rab76].
Smid provides a survey of such algorithms [Smi00]).

The minimum disk approximation algorithm is a simplification of the work of Har-Peled and Mazumdar [HM03].
Note that this algorithm can be easily adapted to any point set in constant dimension (with the same running time).

Computing the exact minimum disk containing k points. By plugging the algorithm of Theorem 1.4.1 into the
exact algorithm of Matoušek [Mat95], one gets a O(nk) time algorithm that computes the minimum disk containing k
points. It is conjectured that any exact algorithm for this problem requires Ω(nk) time.



Chapter 2

Quadtrees - Hierarchical Grids

What do you know? You know just what you perceive.
What can you show? Nothin’ of what you believe,
And as you grow, each thread of life that you leave
Will spin around your deeds and dictate your needs
As you sell your soul and you sow your seeds,
And you wound yourself and your loved one bleeds,
And your habits grow, and your conscience feeds
On all that you thought you should be –
I never thought this could happen to Meeeeeeeee

– Dreidel, Don McLean.

In this chapter, we discuss quadtrees which is arguably one of the simplest and most powerful geometric data-
structure. We begin in Section 2.1 by giving a simple application of quadtrees and describe a clever way for per-
forming point-location queries quickly in such a quadtree. In Section 2.2, we describe how such quadtrees can be
compressed and how they can be quickly constructed and used for point-location queries. In Section 2.3 we show how
to dynamically maintain a compressed quadtree under insertions and deletions of points.

2.1 Quadtrees - a simple point-location data-structure

Let Pmap be a planar map. To be more concrete, let Pmap be a partition of the unit square
into polygons. The partition Pmap can represent any planar map, where a region in the map
might be composed of several polygons (or triangles). For the sake of simplicity, assume
that every vertex in Pmap shares a constant number of polygons.

We want to preprocess Pmap for point-location queries, so that given a query point we can
figure out which polygon contains the query (see figure on the right). Of course, there are
numerous data-structures that can do this, but let us consider the following simple solution
(which in the worst case, can be quite bad).

Build a tree T, where every node v ∈ T corresponds to a cell 2v (i.e., a square), and the root
corresponds to the unit square. Each node has four children that correspond to the four equal size
squares formed by splitting 2v by horizontal and vertical cuts, see figure on the right.

The construction is recursive, and we start from v = rootT . The conflict-list of the square �v

(i.e., the square associated with v) is a list of all the polygons of Pmap that intersect �v. If the current
node’s conflict list has more than, say, nine polygons, we create its children nodes, and we call recursively on each
child. We compute each child’s conflict-list from its parent list. As such, we stop at a leaf, if its conflict-list is of size
at most nine. For each constructed leaf, we store in it its conflict-list (but we do not store the conflict list for internal
nodes).

The constant here is arbitrary, it just has to be at least the number of polygons of Pmap meeting in one common corner.

5
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Given a query point q, in the unit square, we can compute the polygon of Pmap containing q, by traversing down
T from the root, repeatedly going into the child of the current node, whose square contains q. We stop as soon as we
reach a leaf, and then we scan the leaf’s conflict-list, and check which of the polygons in this list contains q.

An example is depicted on the right, where the nodes on the search path of
the point-location query (i.e., the nodes accessed during the query execution)
are shown. The marked polygons are all the polygons in the conflict list of
the leaf containing the query point.

Of course, in the worst case, if the polygons are long and skinny, this
quadtree might have unbounded complexity. However, for reasonable inputs
(say, the polygons are in fact fat triangles), then the quadtree would have
linear complexity in the input size. The big advantage of quadtrees of course,
is their simplicity. In a lot of cases, quadtrees would be a sufficient solution,
and seeing how to solve a problem using a quadtree might be a first insight
into a problem.

2.1.1 Fast point-location in a quadtree
One possible interpretation of quadtrees is that they are a multi-grid repre-
sentation of a point-set.

Definition 2.1.1 (Canonical squares and canonical grids.) A square is a canonical square, if it is contained inside
the unit square, it is a cell in a grid Gr, and r is a power of two (i.e., it might correspond to a node in a quadtree). We
will refer to such a grid Gr, as a canonical grid.

QTFastPLI(T, q, l, h).
m← b(l + h)/2c
v← QTGetNode(T, q,m)
if v = null then

return QTFastPLI(T, q, l,m − 1).
w← Child(v, q)

//w is the child of v containing q.
If w = null then

return v
return QTFastPLI(T, q,m + 1, h)

Figure 2.1: One can perform point-location
in a quadtree T by calling QTFastPLI
(T, q, 0, height(T )).

Consider a node v of a quadtree of depth i (the root has depth 0),
and its associated square 2v. The side length of 2v is 2−i, and it is
a canonical square in the canonical grid G2−i . In fact, we will refer
to `(v) = −i as the level of v. However, a cell in a grid has a unique
ID made out of two integer numbers. Thus, a node v of a quadtree is
uniquely defined by the triple id(v) = (`(v), bx/rc , by/rc), where (x, y)
is any point in 2v, and r = 2`(v).

Furthermore, given a query point q, and a desired level `, we
can compute the ID of the quadtree cell of this level that contains
q in constant time. Thus, this suggests a very natural algorithm for
doing a point-location in a quadtree: Store all the IDs of nodes in
the quadtree in a hash-table, and also compute the maximal depth h
of the quadtree. Given a query point q, we now have access to any
node along the point-location path of q in T, in constant time. In
particular, we want to find the point in T where this path “falls off” the quadtree (i.e., reaches the leaf). This we can
find by performing a binary search for the leaf.

Let QTGetNode(T, q, d) denote the procedure that, in constant time, returns the node v of depth d in the quadtree
T such that 2v contains the point q. Given a query point q, we can perform point-location in T (i.e., finding the leaf
containing the query) by calling QTFastPLI(T, q, 0, height(T )). See Figure 2.1 for the pseudo-code for QTFastPLI.

Lemma 2.1.2 Given a quadtree T of size n and of height h, one can preprocess it (using hashing), in linear time, such
that one can perform a point-location query in T in O(log h) time. In particular, if the quadtree has height O(log n)
(i.e., it is “balanced”), then one can perform a point-location query in T in O(log log n) time.
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Figure 2.2: A point set and its quadtree, and its compressed quadtree. Note, that each node is associated with a
canonical square. For example, the node in the above quadtree marked by p, would store the gray square showed on
the left, and also would store the point p in this node.

2.2 Compressed Quadtrees

2.2.1 Definition
Definition 2.2.1 (Spread.) For a set P of n points in a metric space, let

Φ(P) =
maxp,q∈P ‖p − q‖

minp,q∈P,p,q ‖p − q‖ (2.1)

be the spread of P. In words, the spread of P is the ratio between the diameter of P and the distance between the two
closest points in P. Intuitively, the spread tells us the range of distances that P possesses.

One can build a quadtree T for P, storing the points of P in the leaves of T, where one keeps splitting a node as
long as it contains more than one point of P. During this recursive construction, if a leaf contains no points of P, we
save space by not creating this leaf, and instead creating a null pointer in the parent node for this child.

Lemma 2.2.2 Let P be a set of n points contained in the unit square, such that diam(P) = maxp,q∈P ‖p − q‖ ≥ 1/2.
Let T be a quadtree of P constructed over the unit square, where no leaf contains more than one point of P. Then,
the depth of T is bounded by O(log Φ), it can be constructed in O(n log Φ) time, and the total size of T is O

(
n log Φ

)
,

where Φ = Φ(P).

Proof : The construction is done by a straightforward recursive algorithm as described above.
Let us bound the depth of T. Consider any two points p, q ∈ P, and observe that a node v of T of level u =⌊

lg ‖p − q‖⌋−1 containing p must not contain q (we remind the reader that lg n = log2 n). Indeed, the diameter of 2v is
smaller than

√
12 + 122u =

√
22u ≤ √2 ‖p − q‖ /2 < ‖p − q‖. Thus, 2v can not contain both p and q. In particular, any

node u of T of level r = − ⌈
lg Φ

⌉ − 2 can contain at most one point of P, where Φ = Φ(P). Otherwise, if u contained
two distinct points, say p, q ∈ P, in its square, then

‖p − q‖ ≤
√

22r =

√
2

2dlg Φe+2
≤
√

2
4Φ

<
diam(P)

Φ
,

since diam(P) ≥ 1/2. This implies that Φ < diam(P) / ‖p − q‖, which is impossible by the definition of the spread, see
Eq. (2.1). Thus, all the nodes of T are of depth O(log Φ).

Since the construction algorithm spends O(n) time at each level of T, it follows that the construction time is
O(n log Φ), and this also bounds the size of the quadtree T.

The bounds of Lemma 2.2.2 are tight, as one can easily verify. But in fact, if you inspect a quadtree generated by
Lemma 2.2.2, you would realize that there are a lot of nodes of T which are of degree one (the degree of a node is the
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number of children it has). See Figure 2.2 for an example. Indeed, a node v of T has more than one child, only if it has
at least two children x and y, such that both 2X and 2y contains points of P. Let Pv be the subset of points of P stored
in the subtree of v, and observe that Px ∪ Py ⊆ Pv and Px ∩ Py = ∅. Namely, such a node v splits Pv into, at least, two
non-empty subsets and globally there can be only n − 1 such splitting nodes. Thus, a regular quadtree might have a
large number of “useless” nodes that one should be able to get rid of and get a more compact data-structure.

If you compress them, they will fit in memory. We can replace such a sequence of
edges by a single edge. To this end, we will store inside each quadtree node v, its
square 2v, and its level `(v). Given a path of vertices in the quadtree that are all of
degree one, we will replace them with a single vertex v that corresponds to the first
vertex in this path, and its only child would be the last vertex in this path (this is the
first node of degree larger than one). This compressed node v has a single child, and
the region rgv that v “controls” is an annulus, seen as the gray area in the figure on the
right.

Otherwise, if v is not compressed, the region that v is in charge of is a square
rgv = 2v. Specifically, an uncompressed node v is either a leaf or a node that splits
the point set into two (or more) non-empty subsets (i.e., two or more of the children of v have points stored in their
subtrees). For a compressed node v, its sole child corresponds to the inner square, which contains all the points of Pv.
We call the resulting tree a compressed quadtree.

Observe, that the only nodes in a compressed quadtree with a single child are compressed (they might be trivially
compressed, the child being one of the four subsquares of the parent). In particular, since any node that has only a
single child is compressed, we can charge it to its parent, which has two (or more) children. There are at most n − 1
internal nodes in the new compressed quadtree that have degree larger than one, since one can split a set of size n at
most n − 1 times till ending up with singletons. As such, a compressed quadtree has linear size (however, it still can
have linear depth in the worst case).

See Figure 2.2 for an example of a compressed quadtree.

Example 2.2.3 As an application for compressed quadtrees, consider the problem of counting how many points are
inside a query rectangle r. We can start from the root of the quadtree, and recursively traverse it, going down a node
only if its region intersects the query rectangle. Clearly, we will report all the points contained inside r. Of course, we
have no guarantee about the query time, but in practice, this might be fast enough.

Note, that one can perform the same task using a regular quadtree. However, in this case, such a quadtree might
require unbounded space. Indeed, the spread of the point set might be arbitrarily large, and as such the depth (and thus
size) of the quadtree can be arbitrarily large. On the other hand, a compressed quadtree would use only O(n) space,
where n is the number of points stored in it.

Example 2.2.4 Consider the point set P = {p1, . . . , pn}, where pi =

(3/4, 3/4)/8i−1, for i = 1, . . . , n. The compressed quadtree for this point
set is depicted on the right.

Here,we have

2vi = [0, 1]2/8i−1 and 2v′i = [0, 1]2/(2 · 8i−1).

As such, v′i is a compressed node, where

rgv′i
= 2v′i \2vi+1 .

Note, that this compressed quadtree has depth and size Θ(n). In par-
ticular, in this case the compressed quadtree looks like a linked list storing
the points.

p1

p2

p3

v1

v2

v3

v′1
v′2

rgv′1

p1

p2

p3
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2.2.2 Efficient construction of compressed quadtrees
2.2.2.1 Bit twiddling and compressed quadtrees

Unfortunately, to be able to efficiently build compressed quadtrees one requires a slightly bizarre computational model.
We are assuming implicitly the unit RAM model, where one can store and manipulate arbitrarily large real numbers
in constant time. To work with grids efficiently we need to be able to compute quickly (i.e., constant time) lg(x) (i.e.,
log2), 2x, and bxc. Strangely, computing a compressed quadtree efficiently is equivalent to the following operation.

Definition 2.2.5 (Bit Index.) Let α, β ∈ [0, 1) be two real numbers. Assume these numbers in base two are written as
α = 0.α1α2 . . . and β = 0.β1β2 . . .. Let bit∆(α, β) be the index of the first bit after the period in which they differ.

For example, bit∆(1/4 = 0.012, 3/4 = 0.112) = 1 and bit∆(7/8 = 0.1112, 3/4 = 0.1102) = 3.

Lemma 2.2.6 If one can compute a compressed quadtree of two points in constant time, then one can compute
bit∆(α, β) in constant time.

Proof : Given α and β we need to compute bit∆(α, β). Now, if |α − β| > 1/128 then we can compute bit∆(α, β) in
constant time. Otherwise, build a one dimensional compressed quadtree (i.e., a compressed trie) for the set {α, β}. The
root is a compressed node in this tree, and its only child v has sidelength 2−i; that is, `(v) = −i. A quadtree node
stores the canonical grid cell it corresponds to, and as such `(v) is available from the compressed quadtree. As such, α
and β are identical in the first i bits of their binary representation, but clearly the differ at the (i + 1)th bit, as the next
level of the quadtree splits them into two different subtrees. As such, if one can compute a compressed trie of two
numbers in constant time, then one can compute bit∆(α, β) in constant time.

If the reader is uncomfortable with building a one dimensional compressed quadtree, then use the point set
P = {(α, 1/3), (β, 1/3)}, and compute a compressed quadtree T for P having the unit square as the root. Similar
argumentation would apply in this case.

Interestingly, once one has such an operation at hand, it is quite easy to compute a compressed quadtree efficiently
via “linearization”. The idea is to define an order on the nodes of a compressed quadtree and maintain the points sorted
in this order, see Section 2.3 below for details. Given the points sorted in this order, one can build the compressed
quadtree in constant time using, essentially, scanning.

However, the resulting algorithm is somewhat counter intuitive. As a first step, we suggest a direct construction
algorithm.

2.2.2.2 A construction algorithm

Let P be a set of n points in the unit square, with unbounded spread. We are interested in computing the compressed
quadtree of P. The regular algorithm for computing a quadtree when applied to P might require unbounded time (but
in practice it might be fast enough). Modifying it so it requires only quadratic time is an easy exercise. Getting down
to O(n log n) time requires some cleverness.

Theorem 2.2.7 Given a set P of n points in the plane, one can compute a compressed quadtree of P in O(n log n)
deterministic time.

Proof : Compute, in linear time, a disk D of radius r, which contains at least n/10 of the points of P, such that
r ≤ 2ropt(P, n/10), where ropt(P, n/10) denotes the radius of the smallest disk containing n/10 points of P. Computing
D can be done in linear time, by a rather simple algorithm (Lemma 1.3.2).

Let α = 2blg rc. Consider the grid Gα. It has a cell that contains at least (n/10)/25 points of P (since D is covered
by 5 × 5 = 25 grid cells of Gα and α ≥ r/2), and no grid cell contains more than 5(n/10) points, by Lemma 1.3.1.
Thus, compute Gα(P), and find the cell 2 containing the largest number of points. Let Pin be the points inside this cell
2, and Pout the points outside this cell. Specifically, we have

Pin = P ∩2 and Pout = P \2 = P \ Pin.

We know that
∣∣∣Pin

∣∣∣ ≥ n/250, and
∣∣∣Pout

∣∣∣ ≥ n/2.

The root is Chinese and is not allowed to have more children at this point in time.
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Pin

Pout

Tout

Tin

vout
vin

Next, compute (recursively) the compressed quadtrees for Pin and Pout, respec-
tively, and let Tin and Tout denote the respective quadtrees. Create a node in both
quadtrees that corresponds to 2. For Tin this would just be the root node vin, since
Pin ⊆ 2. For Tout this would be a new leaf node vout, since Pout ∩ 2 = ∅. Note,
that inserting this new node might require linear time, but it requires only chang-
ing a constant number of nodes and pointers in both quadtrees Now, hang vout on
vin creating a compressed quadtree for P, see figure on the right. In fact, the new
glued node (i.e., vout and vin) might be redundant because of compression – this
can be done if necessary in constant time.

The overall construction time is T (n) = O(n) + T (
∣∣∣Pin

∣∣∣) + T (
∣∣∣Pout

∣∣∣) = O(n log n).

Remark 2.2.8 The reader might wonder where did the Tweedledee and Tweedledum operation (i.e., bit∆(·, ·)) get used
in the algorithm of Theorem 2.2.7. Observe that the hanging stage might require such operation if we hang Tin from a
compressed node of Tout, as computing the new compressed node requires exactly this kind of operation.

Compressed quadtree from squares. It is sometime useful to be able to construct a compressed quadtree from a
list of squares that must appear in it as nodes.

For reasons that will become clear later, we want to construct the quadtree out of a list of quadtree nodes that must
appear in the quadtree. Namely, we get a list of canonical grid cells that must appear in the quadtree (i.e., the level of
the node, together with its grid ID).

Lemma 2.2.9 Given a list C of n canonical squares, all lying inside the unit square, one can construct a compressed
quadtree T such that for any square c ∈ C, there exists a node v ∈ T, such that 2v = c. The construction time is
O(n log n).

Proof: For every canonical square 2 ∈ C, we place two points into a set P, such that any
quadtree for P must have 2 in it. This is done by putting two points in 2 such that they belong to
two different sub-squares of 2. See figure on the right.

The resulting point-set P has 2n points, and we can compute its compressed quadtree T in
O(n log n) time using Theorem 2.2.7. Observe that any cell of C is an internal node of T. Thus
trimming away all the leafs of the quadtree results in a minimal quadtree that contains all the cells
of C as nodes.

2.2.3 Fingering a Compressed Quadtree - Fast Point Location
Let T be a compressed quadtree of size n. We would like to preprocess it so that given a query point, we can find the
lowest node of T whose cell contains a query point q. As before, we can perform this by traversing down the quadtree,
but this might require Ω(n) time. Since the range of levels of the quadtree nodes is unbounded, we can no longer use
binary search on the levels of T to answer the query.

Instead, we are going to use a rebalancing technique on T. Namely, we are going to build a balanced tree T′, which
would have cross pointers (i.e., fingers) into T. The search would be performed on T′ instead of on T. In the literature,
the tree T′ is known as a finger tree.

Definition 2.2.10 Let T be a tree with n nodes. A separator in T is a node v, such that if we remove v from T, we
remain with a forest, such that every tree in the forest has at most dn/2e vertices.

Lemma 2.2.11 Every tree has a separator, and it can be computed in linear time.

Proof : Consider T to be a rooted tree. We precompute for every node in the tree the number of nodes in its subtree
by a bottom-up computation that takes linear time. Set v to be the lowest node in T such that its subtree has ≥ dn/2e
nodes in it, where n is the number of nodes of T . This node can be found by performing a walk from the root of T
down to the child with a sufficiently large subtree till this walk gets “stuck”. Indeed, let v1 be the root of T, and let
vi be the child of vi−1 with the largest number of nodes in its subtree. Let s(vi) be the number of nodes in the subtree
rooted at vi. Clearly, there exists a k such that s(vk) ≥ n/2 and s(vk+1) < n/2.
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Clearly, all the subtrees of the children of vk have size at most n/2. Similarly, if we remove vk and its subtree from
T we remain with a tree with at most n/2 nodes. As such vk is the required separator.

This suggests a natural way for processing a compressed quadtree for point-location queries. Find a separator
v ∈ T , and create a root node fv for T′ which has a pointer to v; now recursively build a finger tree for each tree of
T \ {v}. Hang the resulting finger trees on fv. The resulting tree is the required finger tree T′.

Given a query point q, we traverse T′, where at node fv ∈ T′, we check whether the query point q ∈ 2v, where v is
the corresponding node of T. If q < 2v, we continue the search into the child of fv, which corresponds to the connected
component outside 2v that was hung on fv. Otherwise, we continue into the child that contains q; naturally, we have
to check out the O(1) children of v to decide which one we should continue the search into. This takes constant time
per node. As for the depth for the finger tree T′, observe D(n) ≤ 1 + D(dn/2e) = O(log n). Thus, a point-location query
in T′ takes logarithmic time.

Theorem 2.2.12 Given a compressed quadtree T of size n, one can preprocess it, in time O(n log n), such that given a
query point q, one can return the lowest node in T whose region contains q in O(log n) time.

Proof : We just need to bound the preprocessing time. Observe that it is T (n) = O(n) +
∑t

i=1 T (ni), where n1, . . . nt are
the sizes of the subtrees formed by removing the separator node from T. We know that t = O(1) and ni ≤ dn/2e, for
all i. As such, T (n) = O(n log n).

2.3 Dynamic Quadtrees
Here we show how to store compressed quadtrees using any data-structure for ordered sets. The idea is to define an
order on the compressed quadtree nodes, and then store the compressed nodes in a data-structure for ordered sets. We
show how to perform basic operations using this representation. In particular, we show how to perform insertions and
deletions. This provides us with a simple implementation of dynamic compressed quadtrees.

We start our discussion with regular quadtrees, and later on discuss how to handle compressed quadtrees.

2.3.1 Ordering of nodes and points
Consider a regular quadtree T, and a DFS traversal of T, where the DFS always traverse the children of a node in the
same relative order (i.e., say, first the bottom-left child, then the bottom-right child, top-left child, and top-right child).

Consider any two canonical squares 2 and 2̂, and imagine a quadtree T that contains both squares
(i.e., there are nodes in T with these squares as their cells). Notice, that the above DFS would always
visit these two nodes in a specific order, independent of the structure of the rest of the quadtree.
Thus, if 2 gets visited before 2̂, we denote this fact by 2 ≺ 2̂. This defines a total ordering over
all canonical squares. It would be in fact useful to extend this ordering to also includes points. Thus,
consider a point p and a canonical square 2. If p ∈ 2 then we will say that 2 ≺ p. Otherwise, if
2 ∈ Gi, let 2̂ be the cell in Gi that contains p. We have that 2 ≺ p if and only if 2 ≺ 2̂. Next, consider two points p
and q, and let Gi be a grid fine enough such that p and q lie in two different cells, say, 2p and 2q, respectively. Then
p ≺ q if and only if 2p ≺ 2q.

We will refer to the ordering induced by ≺ as the Q-order.
The ordering ≺ when restricted only to points, is the ordering along a space filling

mapping that is induced by the quadtree DFS. This ordering is know as the Z-order. Note,
however, that since we allow comparing cells to cells, and cells to points, the Q-order no
longer has this exact interpretation. Furthermore, unlike the Peano or Hilbert space filling
curves, our mapping is not continuous. Also, our mapping has the advantage of being easy
to define. Indeed, given a real number α ∈ [0, 1), with the binary expansion α = 0.x1x2x3 . . .
(i.e., α =

∑∞
i=1 xi2−i), our mapping will map it to the point (0.x2x4x6 . . . , 0.x1x3x5 . . .).
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To see that this property indeed holds, think about performing a point location query

in an infinite quadtree for a point p ∈ [0, 1)2. In the top level of the quadtree we have four
possibilities to continue the search. These four possibilities can be encoded as a binary
string of length 2, see figure on the right. Now, if y(p) ∈ [0, 1/2) then the first bit in the
encoding is 0, and if y(p) ∈ [1/2, 1) the first bit output is 1.

Similarly, the second bit in the encoding is the just the first bit in the binary representa-
tion of x(p). Now, after resolving the point-location query in the top level we continue this
search in the tree. Every level in this traversal generates two bits, and these two bits corresponds to the relevant two
bits in the binary representation of y(p) and x(p). In particular, the 2i + 1 and 2i + 2 bit in the encoding of p as a single
real number (in binary), is just the ith bits of (the binary representation of) y(p) and x(p), respectively. In particular,
for a point p ∈ [0, 1)d, let enc≺(p) denote the number in the range [0, 1) encoded by this process.

Claim 2.3.1 For any two points p, q ∈ [0, 1)2, we have that p ≺ q if and only if enc≺(p) < enc≺(q).

2.3.1.1 Computing the Q-order quickly

For our algorithmic applications, we need to be able to find the ordering according to ≺ between any two given
cells/points quickly.

Definition 2.3.2 for any two points p, q ∈ [0, 1]2, let lca(p, q) denote the smallest canonical square that contains both
p and q. It intuitively corresponds to the node that must be in any quadtree storing p and q.

To compute lca(p, q), we revisit the Tweedledee and Tweedledum operation bit∆(α, β) (see Definition 2.2.5), that
for two real numbers α, β ∈ [0, 1) returns the index of the first bit in which α and β differ (in base two). The level ` of
2 = lca(p, q) is equal to

` = 1 −min(bit∆(xp, xq), bit∆(yp, yq)),

where xp and yp denote the x and y coordinates of p, respectively. Thus, the side length of 2 = lca(p, q) is ∆ = 2`. Let
x′ = ∆ bx/∆c and y′ = ∆ by/∆c. Thus,

lca(p, q) = [x′, x′ + ∆) × [y′, y′ + ∆).

We also define the lca of two cells to be the lca of their centers.
Now, given two cells 2 and 2̂, we would like to determine their Q-order. If 2 ⊆ 2̂ then 2̂ ≺ 2. If 2̂ ⊆ 2 then

2 ≺ 2̂. Otherwise, let 2̃ = lca(2, 2̂). We can now determine which children of 2̃ contains these two cells, and since
we know the traversal ordering among children of a node in a quadtree we can now resolve this query in constant time.

Corollary 2.3.3 Assuming that the bit∆ operation and the b·c operation can be performed in constant time, then one
can compute lca of two points (or cells) in constant time. Similarly, their Q-order can be resolved in constant time.

Computing bit∆ efficiently. It seems somewhat suspicious that one assumes that the bit∆ operations can be done in
constant time on a classical RAM machine. However it is a reasonable assumption on a real world computer. Indeed,
in floating point representation, once you are given a number it is easy to access its mantissa and exponent in constant
time. If the exponents are different then bit∆ can be computed in constant time. Otherwise, we can easily ⊕xor the
mantissas of both numbers, and compute the most significant bit that is one. This can be done in constant time by
converting the resulting mantissa into a floating point number, and computing its log2 (some CPUs have this command
built in). Observe, that all these operations are implemented in hardware in the CPU and require only constant time.

2.3.2 Performing operations on a (regular) quadtree stored using Q-order
Let T be a given (regular) quadtree, with its nodes stored in an ordered-set data-structure (think about it as a sorted
list), using the Q-order over the cells. We next describe how to implement some basic operations on this quadtree.
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2.3.2.1 Performing a point-location in a quadtree

Given a query point q ∈ [0, 1]2, we would like to find the leaf v of T such that its cell contains q.
To answer the query, we first find the two consecutive cells in this ordered list such that q lies between them.

Formally, let 2 be the last cell in this list such that 2 ≺ q. It is now easy to verify that 2 must be the quadtree leaf
containing q. Indeed, let 2q be the leaf of T whose cell contains q. By definition, we have that 2q ≺ q. Thus, the only
bad scenario is that 2q ≺ 2 ≺ q. But this implies, by the definition of Q-order, that 2 must be contained inside 2q
contradicting our assumption that 2q is a leaf of the quadtree.

Lemma 2.3.4 Given a quadtree T of size n, with its leaves stored in an ordered-set data-structure D according to the
Q-order, then one can perform a point-location query in O(Q(n)) time, where Q(n) is the time to perform a search
query in D.

2.3.2.2 Overlaying two quadtrees

Given two quadtrees T′ and T′′ we would like to overlay them to compute their combined quadtree. This is the minimal
quadtree such that every cell of T′ and T′′ appears in it. Observe that if the two quadtrees are given as sorted lists of
their cells (ordered by the Q-order) then their overlay is just the merged list, with replication removed.

Lemma 2.3.5 Given two quadtrees T′ and T′′, given as sorted lists of their nodes, one can compute the merged
quadtree in linear time (in the total size of the lists representing them) by merging the two sorted lists and removing
duplicates.

2.3.3 Performing operations on a compressed quadtree stored using Q-order
Let T be a compressed quadtree whose nodes are stored in an ordered-set data-structure using the Q-order. Note,
that the nodes are sorted according to the canonical square that they corresponds to. As such, a node v ∈ T is
sorted according to 2v. The subtlety here is that a compressed node v, is stored according to the square 2v in this
representation, but in fact it is in charge of the compressed region rgv. This will make things slightly more complicated.

2.3.3.1 Point location in a compressed quadtree

Performing a point-location query is a bit subtle in this case. Indeed, if the query point q is contained inside a leaf of
T, then a simple binary search for the predecessor of q in the Q-order sorted list of the cells of T would return this leaf.

However, if the query is contained inside the region of a compressed node, the predecessor
to q in this list (sorted by the Q-order), might be some arbitrary leaf that is contained inside
the compressed node of interest. As a concrete example, consider the figure on the right of a
compressed node. Because of the Q-order, the predecessor query on q would return a leaf that is
stored in the subtree of v.

v
q

In such a case, we need to find the lca of the query point and the leaf returned. This returned cell 2 would either
be in the quadtree itself. In this case we are done as 2 corresponds to the compressed node that contains q. The other
possibility is that 2 is contained inside the cell 2w of a compressed node w that is the parent of v. Again, we can now
find this parent node using a single predecessor query.

algPntLoc_Q-order(T, q).
2v = predecessorQ−order(T, q).
// 2v last node in T

// s.t. 2v � q.
if q ∈ 2v then

return v
2 = lca(2v, q)
2w = predecessorQ−order(T,2).
return w

The code for the point-location procedure is depicted on the right. The
query point is q. The query point is not necessarily stored in the quadtree,
and as such the cell that contains it might be a compressed node (as described
above). As such, the required node v has q ∈ rgv and is either a leaf of the
quadtree or a compressed node.

Lemma 2.3.6 We have that: (i) if q ∈ 2v then q ∈ rgv, and (ii) if the region
of T containing the query point q is a leaf then v is the required leaf.
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Proof : (i) Otherwise, there exists a node x ∈ T such that q ∈ 2x and 2x ( 2v, but that would imply that 2v ≺ 2x ≺ q,
contradicting how 2v was computed.

(ii) Since q is contained in a leaf, then the last square in the Q-order that is before q is the cell of this leaf; that is,
the node v.

Now, if q < 2v then our search “failed” to find a node that contains the query point. So, consider the node w that
should be returned. It must be a compressed node, and by the above, the search returned a node v that is a descendant
of w. As a first step, we compute the square 2 = lca(2v, q). Next, we compute the last cell 2u such that 2u � 2

Now, if 2u = 2 then we are done as q ∈ rgu. Otherwise, if 2 is not in the tree, then u is a compressed node, and
consider its child u′. We have that 2 is contained inside 2u and contains 2u′ . Namely, q ∈ 2u \ 2u′ = rgu. Now, u′

is the only child of u (since it is a compressed node), which implies that 2u and 2u′ are consecutive in T according to
the Q-order, and 2 lies in between these two cells in this order. As such, u ≺ 2 ≺ u′ and as such u is the required node
that contains the query point.

We get the following result.

Lemma 2.3.7 Given a compressed quadtree T of size n, with its leaves stored in an ordered-set data-structure D

according to the Q-order, then point-location queries can be performed using T in O(Q(n)) time, where Q(n) is the
time to perform a search query in D.

2.3.3.2 Insertions and deletions

Let q be a point to be inserted into the quadtree, and let w be the node of the compressed quadtree such that q ∈ rgw.
There are several possibilities:

1. The node w is a leaf, and there is no point associated with it. Then store p at w, and return.
2. The node w is a leaf, and there is a point p already stored in w. In this case, let 2 = lca(p, q), and insert 2 into

the compressed quadtree. This is done by creating a new node z in the quadtree, with the cell of z being 2. We
hang z below w if 2 , 2w (this turns w into a compressed node). (If 2 = 2w we do not need to introduce a new
cell, and just set z = w.) Furthermore, split 2 into its children, and also insert the children into the compressed
quadtree. Finally, associate p with the new leaf that contains it, and associate q with the leaf that contains it.
Note, that because of the insertion w becomes a compressed node if 2w , 2, and it becomes a regular internal
node otherwise.

3. The node w is a compressed node. Let z be the child of w, and consider 2 = lca(2z, q). Insert 2 into the
compressed quadtree if 2 , 2w (note that in this case w would still be a compressed node, but with a larger
“hole”). Also insert all the children of 2 into the quadtree, and store p in the appropriate child. Hang 2z from
the appropriate child, and turn this child into a compressed node.

In all three cases, the insertion requires a constant number of search/insert operations on the ordered-set data-
structure.

Deletion is done in a similar fashion. We delete the point from the node that contains it, and then we trim away
nodes that are no longer necessary.

Theorem 2.3.8 Assuming one can compute the Q-order in constant time, then one can maintain a compressed quadtree
of a set of points in O(log n) time per operation, where insertions, deletions and point-location queries are supported.
Furthermore, this can implemented using any data-structure for ordered-set that supports an operation in logarithmic
time.

2.3.4 Compressed quadtrees in high dimension
Naively, the constants used in the compressed quadtree are exponential in the dimension d. However, one can be more
careful in the implementation. The first problem, for a node v in the compressed quadtree, is to store all the children
of v in an efficient way so that we can access them efficiently. To this end, each child of v can be encoded as a binary
string of length d, and we build a trie inside v for storing all the strings defining the children of v. It is easy, given
a point, to figure out what the binary string encoding the child containing this point. As such, in O(d) time, one can
retrieve the relevant child. (One can also use hashing to this end, but it is not necessary here.)

Now, we build the compressed quadtree using the algorithm described above using Q-order. It is not too hard to
verify that all the basic operations can be computed in O(d) time. Specifically, comparing two points in the Q-order
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takes O(d) time. One technicality that matters when d is large (but this issue can be ignored in low dimensions) is that
if a node has only a few children that are not empty, we create only these nodes, and not the other children. Putting
everything together, we get the following result.

Theorem 2.3.9 Assuming one can compute the Q-order in O(d) time for two points IRd, then one can maintain a
compressed quadtree of a set of points in IRd, in O(d log n) time per operation. The operations insertion, deletion and
point-location query are supported. Furthermore, this can implemented using any data-structure for ordered-set that
supports an operation in logarithmic time.

In particular, one can construct a compressed quadtree of a set of n points in IRd in O(dn log n) time.

2.4 Bibliographical notes
The authoritative text on quadtrees is the book by Samet [Sam89], he also has a more recent book that provides
a comprehensive survey of various tree like data-structures [Sam05] (our treatment is naturally more theoretically
oriented than his). The idea of using hashing in quadtrees is a variant of an idea due to Van Emde Boas, and is also
used in performing fast lookup in IP routing (using PATRICIA tries which are one dimensional quadtrees [WVTP97]),
among a lot of other applications.

The algorithm described, in Section 2.2.2, for the efficient construction of compressed quadtrees is new, as far as
I know. The classical algorithms for computing compressed quadtrees efficiently achieve the same running time, but
require considerably more careful implementation, and paying careful attention to details [CK95, AMN+98]. The idea
of fingering a quadtree is from [AMN+98] (although their presentation is different than ours), but the idea is probably
much older.

The idea of storing a quadtree in an ordered set by using the Q-order on the nodes (or even only on the leaves) is
due to Gargantini [Gar82], and it is referred to as linear quadtrees in the literature. The idea was used repeatedly for
getting good performance in practice from quadtrees.

Our presentation of the dynamic quadtrees (i.e., Section 2.3) follows (very roughly) the work de Berg et al.
[dHTT07].

It is maybe beneficial to emphasize that if one does not require the internal nodes of the compressed quadtree
for the application, then one can avoid storing them in the data-structure. In fact, if one is only interested in the
point themselves, then can even skip storing the leaves themselves, and then the compressed quadtree just becomes a
data-structure that stores the points according to their Z-order. This approach can be used for example to construct a
data-structure for approximate nearest neighbor [Cha02] (however, this data-structure is still inferior, in practice, to the
more optimized but more complicated data-structure of Arya et al. [AMN+98]). The author finds that thinking about
such data-structures as compressed quadtrees (with the whole additional unnecessary information) is more intuitive,
but the reader might disagree®.

Z-order and space filling curves. The idea of using Z-order for speeding up spatial data-structures can be traced
back to the above work of Gargantini [Gar82], and it is widely used in databases and seems to improve performance
in practice [KF93]. The Z-order can be viewed as a mapping from the unit interval to the unit-square, by splitting
the odd bits, of a real number α ∈ [0, 1), to be the x-coordinate and the even bits of α to encode the y-coordinate of
the mapped point. While this mapping is simple to define it is not continuous. Somewhat surprisingly one can find a
continuous mapping that maps the unit interval to the unit-square. A large family of such mappings is known by now,
see Sagan [Sag94] for an accessible book on the topic.

But is it really practical? Quadtrees seems to be widely used in practice and perform quite well. Compressed
quadtrees seems to be less widely used, but they have the benefit of being much simpler than their relatives which
seems to be more practical but theoretically equivalent.

Compressed quadtrees require strange operations. Lemma 2.2.6 might be new, although it seems natural to as-
sume that it was known before. It implies that computing compressed quadtrees requires at least one “strange” op-
eration in the computation model. Once one comes to term with this imperfect situation, the use of Q-order seems

®The author reserves the right to disagree with himself on this topic in the future if the need arises.
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natural and yields reasonably simple algorithm for dynamic maintenance of quadtrees. For example, if we maintain
such a compressed quadtree by using skip-list on the Q-order, we will essentially get the skip-quadtree of Eppstein
et al. [EGS05].

Generalized Compressed quadtrees. Har-Peled and Mendel [HM06] have shown how to extend compressed quad-
trees to the more general settings of doubling metrics. Note, that this variant of compressed quadtrees no longer
requires strange bit operations. However, in the process, one loses the canonical grids structures that a compressed
quadtree has, which is such a useful property.

Why compressed quadtrees? The reader might wonder why we are presenting compressed quadtrees when in
practice people use different data-structures (that can also be analyzed). Our main motivation is that compressed
quadtrees seems to be a universal data-structure, in the sense that they can be used to many different tasks, they are
conceptually and algorithmically simple, and they provide a clear route to solving a problem: Solve your problem
initially on a quadtree for a point set with bounded spread. If this works, try and solve it on a compressed quadtree. If
you want something practical, try some more practical variants like kd-trees [dBCvKO08].

Good triangulations. Balanced quadtree and good triangulations are due to Bern et al. [BEG94]. The analysis we
present uses ideas from the work of Ruppert [Rup95]. While using this approach to analyze [BEG94] is well known
to people working in the field, I am unaware of a reference in the literature where it is presented in this way.

The problem of generating good triangulations had received considerable attention, as it is central to the problem
of generating good meshes, which in turn are important for efficient numerical simulations of physical processes.
One of the main techniques used in generating good triangulations is the method of Delaunay refinement. Here,
one computes the Delaunay triangulation of the point set, and inserts circumscribed centers as new points, for “bad”
triangles. Proving that this method converges and generates optimal triangulations is a non-trivial undertaking, and
is due to Ruppert [Rup93]. Extending it to higher dimensions, and handling boundary conditions make it even more
challenging. However, in practice, the Delaunay refinement method outperforms the (more elegant and simpler to
analyze) method of Bern et al. [BEG94], which easily extends to higher dimensions. Namely, the Delaunay refinement
method generates good meshes with fewer triangles.

Furthermore, Delaunay refinement methods are slower in theory. Getting an algorithm to perform Delaunay re-
finement in the same time as the algorithm of Bern et al. is still open, although Miller [Mil04] got an algorithm with
only slightly slower running time.

Recently, Alper Üngör came up with a “Delaunay-refinement type” algorithm, which outputs better meshes than
the classical Delaunay refinement algorithm [Üng09]. Furthermore, by merging the quadtree approach with the Üngör
technique, one can get an optimal running time algorithm [HÜ05].



Chapter 3

Well Separated Pairs Decomposition

The fact remains that getting people right is not what living is all about anyway. It’s getting them wrong that is living, getting them
wrong and wrong and wrong and then, on careful reconsideration, getting them wrong again. That’s how we known we’re alive:
we’re wrong. Maybe the best thing would be to forget being right or wrong about people and just go along for the ride. But if you
can do that - well, lucky you.

– American Pastoral, Philip Roth.

In this chapter, we will investigate how to represent distances between points efficiently. Naturally, an explicit
description of the distances between n points requires listing all the

(
n
2

)
distances. Here we will show that there is

a considerably more compact representation which is sufficient if all we care about are approximate distances. This
representation would have many nice applications.

3.1 Well-separated pairs decomposition
Let P be a set of n points in IRd, and 1/4 > ε > 0 a parameter. One can represent all distances between points of
P by explicitly listing the

(
n
2

)
pairwise distances. Of course, the listing of the coordinates of each point gives us an

alternative more compact representation (of size dn), but its not a very informative representation. We are interested
in a representation that will capture the structure of the distances between the points.

p
q

s
Figure 3.1:

As a concrete example, consider the three points on the right. We would like to
have a representation that captures that p has similar distance to q and s, and further-
more, q and s are close together as far as p is concerned. As such, if we are interested
in the closest pair among the three points, we will only check the distance between q
and s, since they are the only pair (among the three) that might realize the closest pair.

Q R

Denote by A ⊗ B =

{
{x, y}

∣∣∣∣ x ∈ A, y ∈ B
}

all the (unordered) pairs of points
formed by the sets A and B. We will be informal and refer to A ⊗ B as a pair of
the sets A and B. Here, are interested in schemes that cover all possible pairs of P
by a small collection of such pairs.

Definition 3.1.1 (Pair decomposition.) For a point set P, a pair decomposition of P is a set of pairs

W =
{
{A1, B1} , . . . , {As, Bs}

}
,

such that (I) Ai, Bi ⊂ P for every i, (II) Ai ∩ Bi = ∅ for every i, and (III) ∪s
i=1Ai ⊗ Bi = P ⊗ P.

Translation: For any pair of points p, q ∈ P, there is at least one (and usually exactly one) pair {Ai, Bi} ∈ W such
that p ∈ Ai and q ∈ Bi.

Definition 3.1.2 The pair Q and R is (1/ε)-separated if

max(diam(Q) , diam(R)) ≤ ε · d(Q,R) ,

where d(Q,R) = minq∈Q,s∈R ‖q − s‖.

17
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a b
c

d
e

f
A1 = {d}, B1 = {e}

A2 = {a, b, c}, B2 = {e}
A3 = {a, b, c}, B3 = {d}
A4 = {a}, B4 = {b, c}
A5 = {b}, B5 = {c}
A6 = {a}, B6 = { f }
A7 = {b}, B7 = { f }
A8 = {c}, B8 = { f }
A9 = {d}, B9 = { f }

A10 = {e}, B10 = { f }

W =



{A1, B1} ,
{A2, B2} ,
{A3, B3} ,
{A4, B4} ,
{A5, B5} ,
{A6, B6} ,
{A7, B7} ,
{A8, B8} ,
{A9, B9} ,
{A10, B10}


(i) (ii) (iii)

d
f

c

a

b

e d
f

c

a

b

{A2, B2} ≡ {a, b, c} ⊗ {e}

e

(iv) (v)

Figure 3.2: (i) A point set P = {a, b, c, d, e, f }. (ii) The decomposition into pairs. (iii) The respective (1/2)-WSPD.
For example, the pair of points b and e (and their distance) is represented by {A2, B2} as b ∈ A2 and e ∈ B2. (iv) The
quadtree T representing the point set P. (v) The WSPD as defined by pairs of vertices of T.

Intuitively, the pair Q ⊗ R is (1/ε)-separated if all the points of Q have roughly the same distance to the points of
R. Alternatively, imagine covering the two point sets with two balls of minimum size, and require that the distance
between the two balls is at least 2/ε times the radius of the larger of the two.

Thus, for the three points of Figure 3.1, the pairs {p} ⊗ {q, s} and {q} ⊗ {s} are (say) 2-separated and describe all the
distances among these three points. (The gain here is quite marginal, as we replaced the distance description, made out
of three pairs of points, by distance between two pairs of sets. But stay tuned – exciting things are about to unfold.)

Motivated by the above example, a well-separated pair decomposition is a way to describe a metric by such “well
separated” pairs of sets.

Definition 3.1.3 (WSPD) For a point set P, a well-separated pair decomposition (WSPD) of P with parameter 1/ε is
a pair decomposition of P with a set of pairs

W =
{
{A1, B1} , . . . , {As, Bs}

}
,

such that, for any i, the sets Ai and Bi are ε−1-separated.

For a concrete example of a WSPD, see Figure 3.2.
Instead of maintaining such a decomposition explicitly, it is convenient to construct a tree T having the points of

P as leaves. Now every pair, (Ai, Bi) is just a pair of nodes (vi, ui) of T, such that Ai = Pvi and Bi = Pui , where Pv

denotes the points of P stored in the subtree of v (here v is a node of T). Naturally, in our case, the tree we would use
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is a compressed quadtree of P, but any tree that decomposes the points such that the diameter of a point set stored in a
node drops quickly as we go down the tree might work. Naturally, even when the underlying tree is specified, there are
many possible WSPDs that can be represented using this tree. Naturally, we will try find a WSPD that is “minimal”.

This WSPD representation using a tree gives us a compact representation of the distances of the point set.

Corollary 3.1.4 For a ε−1-WSPDW, it holds, for any pair {u, v} ∈ W, that

∀q ∈ Pu, s ∈ Pv max(diam(Pu) , diam(Pv)) ≤ ε ‖q − s‖ .

It would usually be convenient to associate with each set Pu in the WSPD, an arbitrary representative point repu ∈
P. Selecting and assigning these representative points can always be done by a simple DFS traversal of the T used to
represent the WSPD.

3.1.1 The construction algorithm
Given the point set P in IRd, the algorithm first computes the compressed quadtree T of P. Next, the algorithm works
by being greedy. It tries to put into the WSPD pairs of nodes in the tree that are as high as possible. In particular, if
a pair {u, v} would be generated than the pair formed by the parents of this pair of nodes will not be well separated.
As such, the algorithm starts from the root, and tries to separate it from itself. If the current pair is not well separated,
then we replace the bigger node of the pair by its children (i.e., thus replacing a single pair by several pairs). Clearly,
sooner or later this refinement process would reach well-separated pairs, which it would output. Since it considers all
possible distances up front (i.e., trying to separate the root from itself), it would generate a WSPD covering all pairs
of points.

Let ∆(v) denote the diameter of the cell associated with a node v of the quadtree T. We tweak this definition a bit
so that if a node contains a single point or is empty then it is zero. This would make our algorithm easier to describe.

algWSPD(u, v)
if ∆(u) < ∆(v) then

Exchange u and v
If ∆(u) ≤ ε · d(u, v) then

return
{
{u, v}

}

// u1, . . . , ur - the children of u
return

⋃r
i=1 algWSPD(ui, v).

Figure 3.3: The algorithm algWSPD for computing
well-separated pairs decomposition. The nodes u and
v belong to a compressed quadtree T of P.

Formally, ∆(v) = 0 if Pv is either empty or a single point.
Otherwise, it is the diameter of the region associated with v ;
that is ∆(v) = diam(2v), where 2v (we remind the reader) is
the quadtree cell associated with the node v. Note, that since
T is a compressed quadtree, we can always decide if |Pv| > 1
by just checking if the subtree rooted at v has more than one
node (since then this subtree must store more than one point).

We define the geometric distance between two nodes u
and v of T to be

d(u, v) = d(2u,2v) = min
p∈2u,q∈2v

‖p − q‖ .

We compute the compressed quadtree T of P in O(n log n)
time. Next, we compute the WSPD by calling algWSPD(u0, u0,T),
where u0 is the root of T and algWSPD is depicted in Fig-
ure 3.3.

3.1.1.1 Analysis

The following lemma is implied by an easy packing argument.

Lemma 3.1.5 Let 2 be a cell of a grid G of IRd with cell diameter x. For y ≥ x, the number of cells in G at distance
at most y from 2 is O

(
(y/x)d

)
. (The O(·) notation here, and in the rest of the chapter, hides a constant that depends

exponentially on d.)

Lemma 3.1.6 algWSPD terminates and computes a valid pair-decomposition.
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Proof : By induction, it follows that every pair of points of P is covered by a pair of subsets {Pu,Pv} output by the
algWSPD algorithm. Note, that algWSPD always stops if both u and v are leafs, which implies that algWSPD always
terminates.

Now, observe that if {u, v} is in the output pair, and either Pu or Pv are not a single point, then α = max(diam(Pu) , diam(Pv)) >
0. This implies that d(Pu,Pv) ≥ d(2u,2v) ≥ (α/ε) > 0. Namely, Pu ∩ Pv = ∅.

Lemma 3.1.7 For the WSPD generated by algWSPD, we have that for any pair {u, v} in the WSPD, it holds

max(diam(Pu) , diam(Pv)) ≤ ε · d(u, v) and d(u, v) ≤ ‖q − s‖ ,
for any q ∈ Pu and s ∈ Pv.

Proof : For every output pair {u, v}, we have by the design of the algorithm that

max{diam(Pu) , diam(Pv)} ≤ max{∆(u) ,∆(v)} ≤ ε · d(u, v) .

Also, for any q ∈ Pu and s ∈ Pv, we have d(u, v) = d(2u,2v) ≤ d(Pu,Pv) ≤ d(q, s), since Pu ⊆ 2u and Pv ⊆ 2v.

Note, that our algorithm will generate pairs separating every single point of P from itself. Such pairs are not
interesting and can be thrown away. This is not explicitly checked for in the pseudo-code of Figure 3.3 to keep it
conceptually simple.

Lemma 3.1.8 For a pair {u, v} ∈ W computed by algWSPD, we have that

max
(
∆(u) , ∆(v)

)
≤ min

(
∆
(
p(u)

)
, ∆

(
p(v)

))
,

where p(x) denotes the parent node of the node x in the tree T.

Proof : We trivially have that ∆(u) < ∆
(
p(u)

)
and ∆(v) < ∆

(
p(v)

)
.

A pair {u, v} is generated because of a sequence of recursive calls algWSPD(u0, u0), algWSPD(u1, v1), . . ., al-
gWSPD(us, vs), where us = u, vs = v, and u0 is the root of T. Assume that us−1 = u and vs−1 = p(v). Then
∆(u) ≤ ∆

(
p(v)

)
, since the algorithm always refines the larger cell.

Similarly, let t be the last index such that ut−1 = p(u) (namely, ut−1 , ut = u and vt−1 = vt). Then, since v is a
descendant of vt−1, it holds that

∆(v) ≤ ∆(vt) = ∆(vt−1) ≤ ∆(ut−1) = ∆
(
p(u)

)
,

since (again) the algorithm always refines the larger cell in the pair {ut−1, vt−1}.

Lemma 3.1.9 The number of pairs in the computed WSPD is O(n/εd).

Proof : Let {u, v} be a pair appearing in the output. Consider the sequence (i.e., stack) of recursive calls that led to
this output. In particular, assume that the last recursive call to algWSPD(u, v) was issued by algWSPD(u, v′), where
v′ = p(v) is the parent of v in T. Then

∆
(
p(u)

) ≥ ∆
(
v′
) ≥ ∆(u) ,

by Lemma 3.1.8.
We charge the pair {u, v} to the node v′, and claim that each node of T is charged at most O(ε−d) times. To this

end, fix a node v′ ∈ V(T), where V(T) is the set of vertices of T. Since the pair {u, v′} was not output by algWSPD
(despite being considered) we conclude that ∆(v′) > ε · d(u, v′) and as such d(u, v′) < r = ∆(v′) /ε. Now, there are
several possibilities:

(i) ∆(v′) = ∆(u). But there are at most O
(
(r/∆(v′))d

)
= O(1/εd) nodes that have the same level (i.e., diameter) as v′

such that their cells are in distance at most r from it, by Lemma 3.1.5. Thus, this type of charge can happen at
most O(2d · (1/εd)) times, since v′ has at most 2d children.

(ii) ∆
(
p(u)

)
= ∆(v′). By the same argumentation as above d

(
p(u), v′

) ≤ d(u, v′) < r. There are at most O(1/εd) such
nodes p(u). Since the node p(u) has at most 2d children, it follows that the number of such charges is at most
O
(
2d · 2d · (1/εd)

)
.
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(iii) ∆
(
p(u)

)
> ∆(v′) > ∆(u). Consider the canonical grid G having 2v′ as one of its cells (see Definition 2.1.1). Let 2̂

be the cell in G containing 2u. Observe that 2u ( 2̂ ( 2p(u). In addition, d
(
2̂,2v′

)
≤ d(2u,2v′ ) = d(u, v′) < r.

It follows that are at most O(1/εd) cells like 2̂ that might participate in charging v′, and as such, the total number
of charges is O(2d/εd), as claimed.

As such, v′ can be charged at most O
(
22d/εd

)
= O

(
1/εd

)
times¯. This implies that the total number of pairs

generated by the algorithm is O(nε−d), since the number of nodes in T is O(n).

Since the running time of algWSPD is clearly linear in the output size, we have the following result.

Theorem 3.1.10 For 1 ≥ ε > 0, one can construct a ε−1-WSPD of size nε−d, and the construction time is O
(
n log n + nε−d

)
.

3.2 Applications of WSPD

3.2.1 Spanners
It is sometime beneficial to describe distances between n points by using a graph to encode the distances.

Definition 3.2.1 For a weighted graph G, and any two vertices p and q of G, we will denote by dG(q, s) the graph
distance between q and s. Formally, dG(q, s) is the length of the shortest path in G between q and s. It is easy to
verify that dG is a metric; that is, it complies with the triangle inequality. Naturally, if q and s belongs to two different
connected components of G then dG(q, s) = ∞.

Such a graph might be useful algorithmically if it captures the distances we are interested in while being sparse
(i.e., having few edges). In particular, if such a graph G over n vertices has only O(n) edges, then it can be manipulated
efficiently, and it is a compact implicit representation of the

(
n
2

)
distances between all the pairs of vertices of G.

A t-spanner of a set of points P ⊂ IRd is a weighted graph G whose vertices are the points of P, and for any
q, s ∈ P, we have

‖q − s‖ ≤ dG(q, s) ≤ t ‖q − s‖ ,
The ratio dG(q, s)/ ‖q − s‖ is the stretch of q and s in G. The stretch of G is the maximum stretch of any pair of points
of P.

3.2.1.1 Construction

We are given a set of n points set IRd, and parameter 1 ≥ ε > 0. We will construct a spanner as follows.
Let c = 9 be an arbitrary constant, and set δ = ε/c. Compute a δ−1-WSPD decomposition using the algorithm of

Theorem 3.1.10. For any vertex u in the quadtree T (used in computing the WSPD), let repu be an arbitrary point of
Pu. For every pair {u, v} ∈ W, add an edge between

{
repu, repv

}
with weight

∥∥∥repu − repv

∥∥∥, and let G be the resulting
graph.

One can prove that the resulting graph is connected, and contains all the points of P. We will not prove this
explicitly as this is implied by the analysis below.

3.2.1.2 Analysis

Observe, that by the triangle inequality, we have that dG(q, s) ≥ ‖q − s‖, for any q, s ∈ P.

Theorem 3.2.2 Given a set P of n points in IRd, and a parameter 1 ≥ ε > 0, one can compute a (1 + ε)-spanner of P
with O(nε−d) edges, in O

(
n log n + nε−d

)
time.

¯We remind the reader that we will usually consider the dimension d to be a constant, and the O notation would happily consume any constants
that depend only on d. Conceptually, you can think about the O as being a black hole for such constants, as its gravitational force tear such constants
away. The shrieks of horror of these constant as they are being swallowed alive by the black hOle can be heard every time you look at the O.
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Proof : The construction is described above. The upper bound on the stretch is proved by induction on the length of
pairs in the WSPD. So, fix a pair x, y ∈ P, and assume that by the induction hypothesis, that for any pair z,w ∈ P such
that ‖z − w‖ < ‖x − y‖, it holds dG(z,w) ≤ (1 + ε) ‖z − w‖.

The pair x, y must appear in some pair{u, v} ∈ W, where x ∈ Pu, and y ∈ Pv. Thus
∥∥∥repu − repv

∥∥∥ ≤ d(u, v) + ∆(u) + ∆(v) ≤ (1 + 2δ) ‖x − y‖

and

max
(∥∥∥repu − x

∥∥∥ ,
∥∥∥repv − y

∥∥∥
)
≤ max(∆(u) ,∆(v)) ≤ δ · d(u, v) ≤ δ

∥∥∥repu − repv

∥∥∥

≤ δ(1 + 2δ) ‖x − y‖ < 1
4
‖x − y‖ ,

by Theorem 3.1.10 and since δ ≤ 1/16. As such, we can apply the induction hypothesis to repux and repvy, implying
that

dG(x, repu) ≤ (1 + ε)
∥∥∥repu − x

∥∥∥ and dG(repv, y) ≤ (1 + ε)
∥∥∥y − repv

∥∥∥ .

Now, since repurepv is an edge of G, it holds dG(repu, repv) ≤
∥∥∥repu − repv

∥∥∥. Thus, by the inductive hypothesis and the
triangle inequality, we have that

‖x − y‖ ≤ dG(x, y) ≤ dG(x, repu) + dG(repu, repv) + dG(repv, y)
≤ (1 + ε)

∥∥∥repu − x
∥∥∥ +

∥∥∥repu − repv

∥∥∥ + (1 + ε)
∥∥∥repv − y

∥∥∥
≤ 2(1 + ε) · δ ·

∥∥∥repu − repv

∥∥∥ +
∥∥∥repu − repv

∥∥∥
≤ (1 + 2δ + 2εδ)

∥∥∥repu − repv

∥∥∥
≤ (1 + 2δ + 2εδ)(1 + δ) ‖x − y‖
≤ (1 + ε) ‖x − y‖ .

The last step follows by an easy calculation. Indeed, since c = 9 and cδ = ε ≤ 1, we have that

(1 + 2δ + 2εδ) (1 + δ) ≤ (1 + 4δ)(1 + δ) = 1 + 5δ + 4δ2 ≤ 1 + 9δ ≤ 1 + ε,

as required.

3.2.2 Approximating the Minimum Spanning Tree
For a graph G, let G≤r denote the subgraph of G resulting from removing all the edges of weight (strictly) larger than
r from G.

Lemma 3.2.3 Given a set P of n points in IRd, one can compute a spanning tree T of P, such that ω(T) ≤ (1+ε)ω(M),
whereM is a minimum spanning tree of P, and ω(T) is the total weight of the edges of T. This takes O

(
n log n + nε−d

)

time.
In fact, for any r ≥ 0 and a connected component C ofM≤r, the set C is contained in a connected component of

T≤(1+ε)r.

Proof : Compute a (1 + ε)-spanner G of P and let T be a minimum spanning tree of G. We output the tree T as the
approximate minimum spanning tree. Clearly the time to compute T is O(n log n + nε−d), since the MST of a graph,
with n vertices and m edges, can be computed in O(n log n + m) time.

We remain the task of proving that T is the required approximation. For any q, s ∈ P, let πqs denote the shortest
path between q and s in G. Since G is a (1 + ε)-spanner, we have that w

(
πqs

)
≤ (1 + ε) ‖q − s‖, where w

(
πqs

)
denote

the weight of πqs in G. We have that G′ = (P, E) is a connected subgraph of G, where

E =
⋃

qs∈E(M)

πuv,
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where E(M) denotes the set of edges of the graphM. Furthermore,

ω
(
G′

)
=

∑

(q,s)∈M
w
(
πqs

)
≤

∑

(q,s)∈M
(1 + ε) ‖q − s‖ = (1 + ε)ω(M) ,

since G is a (1 + ε)-spanner. It thus follows that ω(T) ≤ ω(M(G′)) ≤ ω(G′) ≤ (1 + ε)w(M), where M(G′) is the
minimum spanning tree of G′.

The second claim follows by similar argumentation.

3.2.3 Approximating the Diameter

Lemma 3.2.4 Given a set P of n points in IRd, one can compute, in O
(
n log n + nε−d

)
time, a pair p, q ∈ P, such that

‖p − q‖ ≥ (1 − ε)diam(P), where diam(P) is the diameter of P.

Proof : Compute a (4/ε)-WSPDW of P. As before, we assign for each node u of T an arbitrary representative point
that belongs to Pu. This can be done in linear time. Next, for each pair ofW, compute the distance of its representative
points (for each pair, this takes constant time). Let {x, y} be the pair in the W such that distance between its two
Representative points is maximal, and return p = repx and q = repy as the two points realizing the approximation.
Overall, this takes O(n log n + nε−d) time, since |W| = O(n/εd)..

To see why it works, consider the pair q, s ∈ P realizing the diameter of P, and let {u, v} ∈ W be the pair in the
WSPD that contain the two points, respectively (i.e., q ∈ Pu and s ∈ Pv). We have that

∥∥∥repu − repv

∥∥∥ ≥ d(u, v) ≥ ‖q − s‖ − diam(Pu) − diam(Pv)

≥ (1 − 2(ε/2)) ‖q − s‖ = (1 − ε)diam(P) ,

since, by Corollary 3.1.4, max(diam(Pu) , diam(Pv)) ≤ 2(ε/4) ‖q − s‖. Namely, the distance of the two points output
by the algorithm is at least (1 − ε)diam(P).

3.2.4 Closest Pair
Let P be a set of points in IRd. We would like to compute the closest pair; namely, the two points closest to each other
in P.

We need the following observation.

Lemma 3.2.5 LetW be a ε−1-WSPD of P, for ε ≤ 1/2. There exists a pair {u, v} ∈ W, such that (i) |Pu| = |Pv| = 1,
and (ii)

∥∥∥repu − repv

∥∥∥ is the length of the closest pair, where Pu =
{
repu

}
and Pv =

{
repv

}
.

p

q

s
Pu

PvProof : Consider the pair of closest points p and q in P, and consider the pair {u, v} ∈ W,
such that p ∈ Pu and q ∈ Pv. If Pu contains an additional point s ∈ Pu, then we have that

‖p − s‖ ≤ diam(Pu) ≤ ε · d(u, v) ≤ ε ‖p − q‖ < ‖p − q‖ ,

by Theorem 3.1.10 and since ε = 1/2. Thus, ‖p − s‖ < ‖p − q‖, a contradiction to the choice of p and q as the closest
pair. Thus, |Pu| = |Pv| = 1 and repu = q and repv = s.

Algorithm. Compute a ε−1-WSPD W of P, for ε = 1/2. Next, scan all the pairs of W, and compute for all the
pairs {u, v} which connect singletons (i.e., |Pu| = |Pv| = 1), the distance between their representatives repu and repv.
The algorithm returns the closest pair of points encountered.

Theorem 3.2.6 Given a set P of n points in IRd, one can compute the closest pair of points of P in O(n log n) time.

We remind the reader that we already saw a linear (expected) time algorithm for this problem in Section 1.2.
However, this is a deterministic algorithm, and it can be applied in more abstract settings where a small WSPD still
exists, while the previous algorithm would not work.
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p

q

r
3.2.5 All Nearest Neighbors

Given a set P of n points in IRd, we would like to compute for each point q ∈ P, its nearest
neighbor in P (formally, this is the closest point in P \ {q} to q). This is harder than it might
seem at first, since this is not a symmetrical relationship. Indeed, in the figure on the right, q might be the nearest
neighbor to p, but s might be the nearest neighbor to q.

3.2.5.1 The bounded spread case

Algorithm. Assume P is contained in the unit square, and diam(P) ≥ 1/4. Furthermore, let Φ = Φ(P) denote the
spread of P. Compute a ε−1-WSPDW of P, for ε = 1/4.

Scan all the pairs {u, v} with a singleton as one of their sides (i.e., |Pu| = 1), and for each such singleton Pu = {p},
record for p the closest point to it in the set Pv. Maintain for each point the closest point to it that was encountered.

We claim is that in the of this process, of every point in P its recorded nearest point encountered is indeed its
nearest neighbor in P.

Analysis. The analysis of this algorithm is slightly tedious, but it reveals some additional interesting properties of
WSPD. We start with a claim that shows that we will indeed find the nearest neighbor for each point.

Lemma 3.2.7 Let p be any point of P, and let q be the nearest neighbor to p in the set P \ {p}. Then, there exists a
pair {u, v} ∈ W, such that Pu = {p} and q ∈ Pv.

Proof : Consider the pair {u, v} ∈ W such that pq ∈ Pu ⊗ Pv, where p ∈ Pu and q ∈ Pv. However, diam(Pv) ≤
εd(Pu,Pv) ≤ ε ‖p − q‖ ≤ ‖p − q‖ /4. Namely, if Pv contained any other point except p then q would not be the nearest
neighbor to p.

Thus, the above lemma implies that the algorithm will find the nearest neighbor for each point p of P, as the
appropriate pair containing only p on one side would be considered by the algorithm. We remain with the task of
bounding the running time.

A pair of nodes {x, y} of T is a generator of a pair {u, v} ∈ W if {u, v} was computed inside a recursive call
algWSPD(x, y).

Lemma 3.2.8 Let W be a ε−1-WSPD of a point set P generated by algWSPD. Consider a pair {u, v} ∈ W, then
∆
(
p(v)

) ≥ (ε/2)d(u, v) and ∆
(
p(u)

) ≥ (ε/2)d(u, v), where d(u, v) = d(2u,2v) is the distance between the cell of u and
the cell of v.

Proof : Assume, for the sake of contradiction, that ∆(v′) < (ε/2)`, where ` = d(u, v) and v′ = p(v). By Lemma 3.1.8,
we have that

∆(u) ≤ ∆
(
v′
)
< ε

`

2
.

But then
d
(
u, v′

) ≥ ` − ∆
(
v′
) ≥ ` − ε `

2
≥ `

2
.

Thus,

max
(
∆(u) ,∆

(
v′
))
< ε

`

2
≤ εd

(
u, v′

)
.

Namely, u and v′ are well-separated, and as such {u, v′} can not be a generator of {u, v}. Indeed, if {u, v′}was considered
by the algorithm than it would have added it to the WSPD, and never created the pair {u, v}.

So, the other possibility is that {u′, v} is the generator of {u, v}, where u′ = p(u). But then ∆(u′) ≤ ∆(v′) < ε`/2, by
Lemma 3.1.8. Using the same argumentation as above, we have that {u′, v} is a well-separated pair and as such it can
not be a generator of {u, v}.

But this implies that {u, v} can not be generated by algWSPD, since either {u, v′} or {u′, v} must be a generator of
{u, v}. A contradiction.
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Claim 3.2.9 For two pairs {u, v} , {u′, v′} ∈ W such that 2u ⊆ 2u′ , it holds that the interiors of 2v and 2v′ are disjoint.

Proof : Since 2u ⊆ 2u′ it follows that u′ is an ancestor of u.
If v′ is an ancestor of v then algWSPD returned the pair {u′, v′} and it would have never generated the pair {u, v}.
If v is an ancestor of v′ (see figure on the right) then

∆(u) < ∆
(
u′

)
(u′ is an ancestor of u)

≤ ∆
(
p(v′)

)
(by Lemma 3.1.8 applied to

{
u′, v′

}
)

≤ ∆(v) (v is an ancestor of v′)
≤ ∆

(
p(u)

)
(by Lemma 3.1.8 applied to {u, v})

≤ ∆
(
u′

)
(u′ is an ancestor of u). v′

v′

vu′

u

p(v′)

Namely, ∆(v) = ∆(u′). But then, the pair {u′, v} is a generator of both {u, v} and {u′, v′}. To see that, observe that
algWSPD always try to consider pairs that the same diameter (it always split the bigger side of a pair). As such, for
the algorithm to generate the pair {u, v} it must have had a generator u′′, v, such that diam(u′′) ≥ diam(v). But the
lowest ancestor of u that has this property is u′.

Now, when algWSPD considered the pair {u′, v} it split one of its sides (by calling on its children). In either case,
it either did not create the pair {u, v} or it did not create the pair {u′, v′}. A contradiction.

The case v = v′ is handled in a similar fashion.

Lemma 3.2.10 Let P be a set n points in IRd, W a ε−1-WSPD of P, ` > 0 be a distance, and W be the set of pairs
{u, v} ∈ W such that ` ≤ d(u, v) ≤ 2`. Then, for any point p ∈ P, the number of pairs in W containing p is O(1/εd).

Proof : Let u be the leaf of the quadtree T (that is used in computing W) storing the point p, and let π be the path
between u and the root of T. We claim that W contains at most O(1/εd) pairs with nodes that appears along π. Let

T =

{
v

∣∣∣∣ v ∈ π, {u, v} ∈ W
}
.

The cells of T are interior disjoint by Claim 3.2.9, and they contain all the pairs in W that covers p.
So, let r be the largest power of two which is smaller than (say) ε`/(4

√
d). Clearly, there are O(1/εd) cells of Gr

in distance at most 2` from 2u. We account for the nodes v ∈ T , as follows:

(i) If ∆(v) ≥ r
√

d then 2v contains a cell of Gr, and there are at most O(1/εd) such cells.

(ii) If ∆(v) < r
√

d and ∆
(
p(v)

) ≥ r
√

d, then:

(a) If p(v) is a compressed node, then p(v) contains a cell of Gr and it has only v as a single child. As such,
there are most O(1/εd) such charges.

(b) Otherwise, p(v) is not compressed, but then diam(2v) = diam
(
2p(v)

)
/2. As such 2v contains a cell of Gr/2

in distance at most 2` from 2u, and there are O(1/εd) such cells.

(iii) The case ∆
(
p(v)

)
< r
√

d is impossible. Indeed, by Lemma 3.1.8, we have ∆
(
p(v)

)
< r
√

d ≤ ε`/4 = ε
4 d(u, v), a

contradiction to Lemma 3.2.8.

We conclude that there are at most O(1/εd) pairs that include p in W.

Lemma 3.2.11 Let P be a set of n points in the plane, then one can solve the all nearest neighbor problem, in time
O(n(log n + log Φ(P))) time, where Φ is the spread of P.

Proof : The algorithm is described above. We only remain with the task of analyzing the running time. For a number
i ∈ {

0,−1, . . . ,− ⌊
lg Φ

⌋ − 4
}
, consider the set of pairs Wi, such that {u, v} ∈ Wi, if and only if {u, v} ∈ W, and

2i−1 ≤ d(u, v) ≤ 2i. Here, W is a 1/ε-WSPD of P, where ε = 1/4. A point p ∈ P can be scanned at most
O(1/εd) = O(1) times because of pairs in Wi by Lemma 3.2.10. As such, a point gets scanned at most O(log Φ) times
overall, which implies the running time bound.
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3.2.5.2 All nearest neighbor – the unbounded spread case

To handle the unbounded case, we need to use some additional geometric properties.

Lemma 3.2.12 Let u be a node in the compressed QT of P, and partition the space around repu into cones of angle
≤ π/3. Let ψ be such a cone, and let Q be the set of all points in P which are in distance ≥ 4diam(Pu) from repu, and
they all lie inside ψ. Let q be the closest point in Q to repu. Then, q is the only point in Q that its nearest neighbor
might be in Pu.

Proof : Let p = repu and consider any point s ∈ Q.

p

Pu

ψ q

r

Qβ
γ

α

Since ‖s − p‖ ≥ ‖q − p‖, it follows that α = ∠sqp ≥ ∠qsp = γ. Now, α+γ = π−β,
where β = ∠spq. But β ≤ π/3, and as such

2α ≥ α + γ = π − β ≥ 3β − β = 2β.

Namely, α is the largest angle in the triangle 4pqs, which implies ‖s − p‖ ≥ ‖s − q‖. Namely, q is closer to s than p,
and as such p can not serve as the nearest neighbor to s in P.

It is now straightforward (but tedious) to show that, in fact, for any t ∈ Pu, we have ‖s − t‖ ≥ ‖s − q‖, which
implies the claim.

Lemma 3.2.12 implies that we can do a top-down traversal of QT (P), after computing a ε−1-WSPDW of P, for
ε = 1/16. For every node u, we maintain a (constant size) set Ru of candidate points such that Pu might contain their
nearest neighbor.

So, assume we had computed Rp(u), and consider the set

X(u) = Rp(u) ∪
⋃

{u,v}∈W,|Pv |=1

Pv.

(Note, that we do not have to consider pairs with |Pv| > 1, since no point in Pv can have its nearest neighbor in Pu

in such a scenario.) Clearly, we can compute X(u) in linear time in the number of pairs inW involved with u. Now,
we build a “grid” of cones around repu, and throw the points of X(u) into this grid. For each such cone, we keep only
the closest point p′ to repu (because the other points in this cone would be use p′ as nearest neighbor before using any
point of Pu). Let Ru be the set of these closest points. Since the number of cones is O(1), it follows that |Ru| = O(1).

We continue this top-down traversal till Ru is computed for all the nodes in the tree.
Now, for every vertex u, if Pu contains only a single point p, then we compute for any point q ∈ Ru its distance to

p, and if p is a better candidate to be a nearest neighbor, then we set p as the (current) nearest neighbor to q.

Correctness. Clearly, the resulting running time (ignoring the computation of the WSPD) is linear in the number of
pairs of the WSPD and the size of the compressed quadtree. If p is the nearest neighbor to q, then there must be a
WSPD pair {u, v} such that Pv = {q} and p ∈ Pu. But then, the algorithm would add q to the set Ru, and it would be in
Rz, for all descendants z of u in the quadtree, such that p ∈ Pz. In particular, if y is the leaf of the quadtree storing p,
then q ∈ Ry, which implies that the algorithm computes correctly the nearest neighbor to q.

This implies the correctness of the algorithm.

Theorem 3.2.13 Given a set P of n points in IRd, one can solve the all nearest neighbor problem in O(n log n) time.

Here are the details for readers of little fate. By the law of sines, we have ‖p−s‖
sinα =

‖q−s‖
sin β . As such, ‖q − s‖ = ‖p − s‖ sin β

sinα . Now, if α ≤ π − 3β

then ‖q − s‖ = ‖p − s‖ sin β
sinα ≤ ‖p − s‖ sin β

sin(3β) ≤ ‖p−s‖
2 < ‖p − s‖ − ∆(u), since ‖p − s‖ ≥ 4∆(u). This implies that no point of Pu can be the nearest

neighbor of s.
If α ≥ π − 3β then the maximum length of qs is achieved when γ = 2β. The sines law then implies that ‖q − s‖ = ‖p − q‖ sin β

sin(2β) ≤ 3
4 ‖p − q‖ ≤

3
4 ‖p − s‖ < ‖p − s‖ − ∆(u), which again implies the claim.
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3.3 Semi-separated pairs decomposition
Here we present an interesting relaxation of WSPD, that has the advantage of having a low total weight.

Definition 3.3.1 Given a pair decomposition W =
{
{A1, B1} , . . . , {As, Bs}

}
of a point-set P, its weight is ω(W) =∑s

i=1(|Ai| + |Bi|).
It is easy to verify that, in the worst case, a WSPD of a set of n points in the

plane might have weight O(n2). The notation of SSPD circumvent this by requiring
a weaker notion of separation.

Definition 3.3.2 Two sets of points Q and R are (1/ε)-semi-separated if

min(diam(Q) , diam(R)) ≤ ε · d(Q,R) ,

where d(Q,R,=) mins∈Q,t∈R ‖s − t‖.
See figure on the right for an example.

Q

R

See Definition 3.1.2 for the original notion of sets being well-separated; in particular, in the well-separated case we
demand that the separation was large relative to the diameter of both sets, while here it is sufficient that the separation
is large for the smaller of the two sets. The analog of the WSPD (Definition 3.1.3) is the following.

≤ n/c1

≥ n/2

b

b′

Definition 3.3.3 (SSPD) For a point set P, a semi-separated pair decomposi-
tion (SSPD) of P with parameter 1/ε, denoted by ε−1-SSPD, is a pair decom-
position of P formed by a set of pairsW such that all the pairs are 1/ε-semi-
separated.

Observation 3.3.4 A ε−1-WSPD of P is ε−1-SSPD of P.

3.3.1 Construction
We use the property that in low dimensions there always exists a good separating ring that break the point set into two
reasonably large subsets. Indeed, consider the smallest ball b = b(p, r) that contains n/c1 points of P, where c1 is a
sufficiently large constant. Let b′ be the scaling of this ball by a factor of two. By a standard packing argument, the
ring b′ \ b can be covered with c = O(1) copies of b, none of which can contain more than n/c1 points of P. It follows,
that by picking c1 = 3c, we are guaranteed that at least half the points of P are outside b′. Now, the ring can be split
into n/2 empty rings (by taking a sphere that passes through each point inside the ring), and one of them would be of
thickness at least r/n, and it would separate the inner n/c points of P from the outer n/2 of P. Doing this efficiently
requires trading off some constants, and some tedious details, as described in the following lemma.

Lemma 3.3.5 Let P be a set of n points in IRd, t > 0 be a parameter, and let c be a sufficiently large constant. Then one
can compute, in linear time, a ball b = b(p, r), such that (i) |b ∩ P| ≥ n/c, (ii) |b(p, r(1 + 1/t)) ∩ P| ≤ n/2t + |b ∩ P|,
and (iii) |P \ b(p, 2r)| ≥ n/2.

We also need the following easy property.

Lemma 3.3.6 Let P be a set of n points in IRd, with spread Φ = Φ(P), and let ε > 0 be a parameter. Then, one
can compute (1/ε)-WSPD (and thus a (1/ε)-SSPD) for P of total weight O(nε−2 log Φ). Furthermore, any point of P
participates in at most O

(
ε−d log Φ

)
pairs.

Proof : Build a regular (i.e., not compressed) quadtree for P. and observe that its depth is O(log Φ). Now, construct a
WSPD for P using this quadtree. Consider a pair of nodes (u, v) in this WSPD, and observe that the sidelength of u
and v is the same up to a factor of two (since we used a non-compressed quadtree). As such, every node participates
in O(1/εd) pairs in the WSPD. We conclude that each point participates in O

(
ε−d log Φ

)
pairs, which implies that the

total weight of this WSPD is as claimed.
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Theorem 3.3.7 Let P be a set of points in IRd, and let ε > 0 be a parameter. Then, one can compute a (1/ε)-SSPD
for P of total weight O(nε−d log2 n). The number of pairs in the SSPD is O(nε−d log n), and the computation time is
O(n log2 n + n/ε−d log n).

3.3.2 Lower bound
The result of Theorem 3.3.7 can be improved so that the total weight of the SSPD is O(nε−d log n), see bibliographical
notes. Interestingly, it turns out that any pair decomposition (without nay required separation property) has to be of
total weight Ω(n log n).

Lemma 3.3.8 Let P be a set of n points, and let W =
{
{A1, B1} , . . . , {As, Bs}

}
be a pair decomposition of P (see

Definition 3.1.1). Then,
∑

i(|Ai| + |Bi|) = Ω(n log n).

3.4 Bibliographical Notes
Well separated pairs decomposition was defined by Callahan and Kosaraju [CK95]. They defined a different space
decomposition tree, known as the fair split tree. Here, one computes the axis parallel bounding box of the point-set,
and always split along the longest edge by a perpendicular plane in the middle (or near the middle). This splits the
point set into two sets, for which we construct fair split tree recursively. Implementing this in O(n log n) time requires
some cleverness. See [CK95] for details.

Our presentation of WSPD (very roughly) follows [HM06]. The (easy) observation that a WSPD can be generated
directly from a compressed quadtree (thus avoiding the fair split tree mess) is from there.

Callahan and Kosaraju [CK95] were inspired by the work of Vaidya [Vai86] on the all nearest neighbor problem
(i.e., compute for each points in P, its nearest neighbor in P). He defined the fair split tree, and showed how to compute
the all nearest neighbor in O(n log n) time. However, the first to give an O(n log n) time algorithm for the all nearest
neighbor algorithm was Clarkson [Cla83] (this was part of his PhD thesis).

Diameter. The algorithm for computing the diameter in Section 3.2.3 can be improved by not constructing pairs that
can not improve the (current) diameter, and constructing the underlying tree on the fly together with the diameter. This
yields a simple algorithm that works quite will in practice, see [Har01a].

All nearest neighbor. Section 3.2.5 is a simplification of the solution for the all k-nearest neighbor problem. Here,
one can compute for every point its k-nearest neighbor in O(n log n + nk) time. See [CK95] for details.

The all nearest neighbor algorithm for the bounded spread case (Section 3.2.5.1) is from [HM06]. Note, that
unlike the unbounded case, this algorithm only use packing arguments for its correctness. Surprisingly, the usage
of the Euclidean nature of the underlying space (as done in Section 3.2.5.2) seems to be crucial in getting a faster
algorithm for this problem. In particular, for the case of metric spaces of low doubling dimension (that do have a small
WSPD), solving this problem requires Ω(n2) time in the worst case.

Dynamic maintenance. WSPD can be maintained in polylogarithmic time under insertions and deletions. This is
quite surprising when one considers that, in the worst case, a point might participate in a linear number of pairs, and in
fact, a node in the quadtree might participate in a linear number of pairs. This is described in detail in Callahan thesis
[Cal95]. Interestingly, using randomization, maintaining the WSPD can be considerably simplified, see the work by
Fischer and Har-Peled [FH05].

High dimension. In high dimensions, as the uniform metric demonstrates (i.e., n points, all of them in distance
1 from each other) the WSPD can have quadratic complexity. This metric is easily realizable as the vertices of a
simplex in IRn−1. On the other hand, doubling metrics have near linear size WSPD. Since WSPDs by themselves are
so powerful, it is tempting to try and define the dimension of a point set by the size of the WSPD it posses. This seems
like an interesting direction for future research, as currently little is known about it (to the best of my knowledge).
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Semi-separated pairs decomposition. The notion of semi-separated pairs decomposition was introduced by Varadara-
jan [Var98] who used it to speed up matching algorithm for points in the plane. His SSPD construction of was of total
weight O(n log4 n) (for a constant ε). This was improved to O(n log n) by [AdBFG09].

SSPD were used to construct spanners that can survive even if large fraction of the graph disappears (for example,
all the nodes inside arbitrary convex region disappear) [AdBFG09]. In [AdBF+09], SSPDs were used for computing
additively weighted spanners. Further work on SSPD can be found in [ACFS09]. The simpler construction showed
here is due to the author and it also works for metrics with low doubling dimension.

The elegant proof of the lower bound on the size of SSPD is from [BS07].

Euclidean minimum spanning tree. Let P be a set of points in IRd, for which we want to compute its minimum
spanning tree (MST). It is easy to verify that if an edge pq that is not a Delaunay edge of P, then its diametrical ball
must contain some other point s in its interior, but then ps and qs are shorter than pq. This in turn implies that pq
can not be an edge of the MST. As such, the edges of the MST are subset of the edges of the Delaunay triangulation
of P. Since the Delaunay triangulation can be computed in O(n log n) time in the plane, this implies that MST can be
computed in O(n log n) time in the plane. In d ≥ 3 dimensions, the exact MST can be computed in O

(
n2−2/(dd/2e+1)+ε′

)

time, where ε′ > 0 is an arbitrary small constant [AESW91]. The computation of MST is closely related to the
bichromatic closest pair problem [KLN99].

There is a lot of work on MST in Euclidean settings, from estimating its weight in sub-linear time [CRT05],
to doing this in the streaming model under insertions and deletions [FIS05], to implementation of a variant of the
approximation algorithm described here [NZ01]. This list is by no means exhaustive.



Chapter 4

Random Partition via Shifting

Associations of mutual interest between the university and the corporations were natural, inevitable, and widely accepted. According
to the state legislature, they were to be actively pursued. The legislature, in fact, was already counting the "resources" that could
be "allocated" elsewhere in state government when corporations began picking up more of the tab for higher education, so success
in finding this money would certainly convince them that further experiments in driving the university into the arms of the private
sector would be warranted, that actually paying for the university out of state funds was irresponsible, or even immoral, or even
criminal (robbing widows and children, etc., to fatten sleek professors who couldn’t find real employment, etc.).

– Moo, Jane Smiley.

In this chapter, we investigate a rather simple technique for partitioning a geometric domain. We randomly shift
a grid in IRd, and consider each grid cell resulting from this shift. The shifting is done by adding a random vector,
chosen uniformly from [0, 1]d, so that the new grid has this vector as its origin.

Points that are close together have good probability to fall into the same cell in the new grid. This idea can be
extended to shifting multi resolution grids over IRd. That is, we randomly shift a quadtree over a region of interest.
This yields some simple algorithms for clustering and nearest-neighbor search.

4.1 Partition via Shifting

4.1.1 Shifted partition of the real line
Consider a real number ∆ > 0, and let b be a uniformly distributed number in the interval [0,∆]. This induces a natural
partition of the real line into intervals, by the function

hb,∆(x) =

⌊
x − b

∆

⌋
.

Hence each interval has size ∆, and the origin is shifted to the right by an amount b.

Remark 4.1.1 Note, that hb,∆(x) induces the same partition of the real line as hb′,∆(x) (but it is not the same function)
if |b − b′| = i∆, where i is an integer. In particular, this implies that we can pick b uniformly from any interval of
length ∆ and get the same distribution on the partitions of the real line.

Specifically, for our purposes, is enough if b is distributed uniformly in an interval of the from [y + i∆, y + j∆],
for two integers i and j such that i < j and y is some real number. It is easy to verify that the we still get the same
distribution on the partitions of the real line.

Lemma 4.1.2 For any x, y ∈ IR, we have Pr
[
hb,∆(x) , hb,∆(y)

]
= min

( |x−y|
∆
, 1

)
.

Proof : Assume x < y. Clearly, the claim trivially holds if x − y > ∆, since then x and y are always assigned different
values of hb,∆(·), and the required probability is one. Now, imagine we pick b uniformly in the range [x, x+∆]. Clearly,
the probability of the event we are interested in remains the same. But then, hb,∆(x) , hb,∆(y) if and only if b ∈ [x, y],
which implies the claim.

30
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4.1.2 Shifted partition of space
Let P be a point set in IRd, and consider a point b = (b1, . . . , bd) ∈ IRd randomly and uniformly chosen from the
hypercube [0,∆]d, and consider the grid Gd(b,∆) that has its origin at b, and with sidelength ∆. For a point p ∈ IRd the
ID of the grid cell containing it is

id(p) = hb,∆(p) =
(
hb1,∆(p1) , . . . , hbd,∆(pd)

)
.

(We used a similar concept when solving the closest pair problem, see Theorem 1.2.7p3.)

Lemma 4.1.3 Given a ball B of radius r in IRd (or an axis parallel hypercube with sidelength 2r). The probability
that B is not contained in a single cell of Gd(b,∆) is bounded by min( 2dr/∆ , 1), where Gd(b,∆) is a randomly shifted
grid.

Proof : Project B into the ith coordinate. It becomes an interval Bi of length 2r, and Gd(b,∆) becomes the one
dimensional shifted grid G1(bi,∆). Clearly, B is contained in a single cell of Gd(b,∆) if and only if Bi is contained in
a single cell of G1(bi,∆), for i = 1, . . . , d.

Now, Bi is not contained in an interval of G1(bi,∆) iff its endpoints are in different cells. Let Ei denote this event.
By Lemma 4.1.2, the probability of Ei is ≤ 2r/∆. As such, the probability of B to not be contained in a single grid is
Pr[∪iEi] ≤ ∑

i Pr[Ei] ≤ 2dr/∆. Since a probability is always bounded by one, we have that this probability is bounded
by min(2dr/∆, 1).

4.1.2.1 Application – covering by disks

Given a set P of n points in the plane we would like to cover them by a minimal number of unit disks. Here, a unit
disk is a disk of radius one. Observe, that if the cover requires k disks, then we can compute it in O

(
kn2k+1

)
time.

Indeed, consider a unit disk D that covers a subset Q ⊆ P. We can translate D such that it still covers Q, and either
its boundary circle contains two points of Q, or the top point of this circle is on an input point.

Observe that: (I) Every pair of such input points defines two possible disks, see
figure on the right. (II) The same subset covered by a single disk might be coverable
by several different such canonical disks. (III) If a pair of input points is at distance
larger than 2, then the canonical disk they define is invalid.

As such, there are

2
(
n
2

)
+ n ≤ n2

such canonical disks. We can assume the cover uses only such disks
Thus, we exhaustively check all such possible covers formed by k canonical disks. Overall, there are ≤ n2k different

covers to consider, and each such candidate cover can be verified in O(nk) time. We thus get the following easy result.

Lemma 4.1.4 Given a set P of n points in the plane one can compute, in O
(
kn2k+1

)
time, a cover of P by at most k

unit disks, if such a cover exists.

Proof : We use the above algorithm trying all covers of size i, for i = 1, . . . , k. The algorithm returns the first cover
found. Clearly, the running time is dominated by the last iteration of this algorithm.

One can improve the running time of Lemma 4.1.4 to nO
(√

k
)
.

The problem with this algorithm is that k might be quite large (say n/4). Fortunately, the shifting grid saves the
day.

Theorem 4.1.5 Given a set P of n points in the plane and a parameter ε > 0, one can compute using a randomized
algorithm, in nO(1/ε2) time, a cover of P by X unit disks, where E[X] ≤ (1 + ε)opt, where opt is the minimum number of
disks required.
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Proof : Let ∆ = 12/ε, and consider a randomly shifted gird G2(b,∆). Compute all the grid cells that contain points of
P. This is done by computing for each point p ∈ P its id(p) and storing it in a hash table. Now, when inserting a point
into the hash table, we add its grid cell to a separate list if this id is being inserted for the first time into the hash table.
This clearly can be done in linear time.

Now, for each such grid cell 2 we now have the points of P falling into this grid cell (they are stored with the same
id in the hash table), and let P2 denote this set of points.

Observe, that any grid cell of G2(b,∆) can be covered by M = (∆ + 1)2 unit disks. Indeed, each unit disk contains
a unit square, and clearly a grid cell of sidelength ∆ can an be covered using at most M unit squares.

Thus, for each such grid cell 2, compute the minimum number of unit disks required to cover P2. Since this
number is at most M, we can compute this minimum cover in O

(
Mn2M+1

)
time, by Lemma 4.1.4. There are at most

n non-empty grid cells, so the total running time of this stage is O
(
Mn2M+2

)
= nO(1/ε2). Finally, merge together the

covers from each grid cell, and return this as the overall cover.

︸ ︷︷ ︸
∆

We are left with the task of bounding the expectation of X. So, consider the optimal
solution F =

{
D1, . . . ,Dopt

}
. We generate a feasible solution G that is one of the possible

solutions considered by our algorithm. Specifically, for each grid cell 2, let F2 denote
the set of disks of the optimal solution that intersect 2. Consider the multiset G =⋃

2 F2. Clearly, the algorithm returns for each grid cell 2 a cover that is of size at most
|F2| (indeed, it returns the smallest possible cover for P2, and F2 is one such possible
cover). As such, the cover returned by the algorithm is of size at most |G|.

Clearly, a disk of the optimal solution can intersect at most 4 cells of the grid, and as
such it can appear in G at most 4 times. In fact, a disk Di ∈ F will appear in G more than once, if and only if it is not
fully contained in a grid cell of G2(b,∆). By Lemma 4.1.3 the probability for that is bounded by 4/∆ (as r = 1 and
d = 2).

Specifically, let Xi be an indicator variable that is one if and only if Di is not fully contained in a single cell of
G2(b,∆). We have that

E
[
|G|

]
≤ E

opt +

opt∑

i=1

3Xi

 = opt +

opt∑

i=1

3 E[Xi] = opt +

opt∑

i=1

3 Pr[Xi = 1] ≤ opt +

opt∑

i=1

3
4
∆

=

(
1 +

12
∆

)
opt = (1 + ε) opt,

since ∆ = 12/ε. As such, in expectation, the solution returned by the algorithm is of size at most (1 + ε)opt.

The running time of Theorem 4.1.5 can be improved to nO(1/ε).

4.1.3 Shifting quadtrees
4.1.3.1 One dimensional quadtrees

Assume, that we are given a set P of n numbers contained in the interval [1/2, 3/4]. Randomly, and uniformly, choose
a number b ∈ [0, 1/2], and consider the (one dimensional) quadtree T of P, using the interval b + [0, 1] for the root
cell. Now, for two numbers α, β ∈ P let

Lb(α, β) = 1 − bit∆(α − b, β − b),

see Definition 2.2.5p9.
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α β
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This is the last level of the (one dimensional) shifted canonical grid
(i.e., one dimensional quadtree) that contains α and β in the same interval.
Namely, this is the level of the node of T that is the least common ances-
tor containing both numbers; that is, the level of lca(α, β) is Lb(α, β). We
remind the reader that a node in this quadtree that corresponds to an in-
terval of length 2−i has level −i. These definitions are demonstrated in
the figure on the right (without shifting).

In the following, we will assume that one can compute Lb(α, β) in
constant time.

Remark 4.1.6 Interestingly, the value of Lb(α, β) depends only on α, β
and b, but is independent of the other points of P.

The following lemma bounds the probability that the least common ancestor of two numbers is in charge of an
interval that is considerably longer than the difference between the two numbers.

Lemma 4.1.7 Let α, β ∈ [1/2, 3/4] be two numbers, and consider a random number b ∈ [0, 1/2]. Then, for any
positive integer t, we have that Pr

[
Lb(α, β) > lg2 |α − β| + t

] ≤ 4/2t.

Proof : Let M =
⌊
lg |α − β|⌋ (we remind the reader that lg x = log2 x). Consider the shifted partition of the real line by

intervals of length ∆M+i = 2M+i, and a shift b. Let XM+i be an indicator variable that is one if and only if α and β are
in different intervals of this shifted partition. Formally, XM+i = 1 if and only if hb,∆M+i (α) , hb,∆M+i (β).

Now, if Lb(α, β) = M + i then the highest level such that both α and β lie in the same shifted interval is M + i. As
such, going one level down, these two numbers are in different intervals, and hb,2M+i−1 (α) , hb,2M+i−1 (β). Namely, we
have that XM+i−1 = 1. By Lemma 4.1.2, we have that Pr[XM+i = 1] ≤ |α − β| /∆M+i. As such, the probability we are
interested in is

Pr
[
Lb(α, β) > lg2 |α − β| + t

] ≤
∞∑

i=1+t

Pr
[
Lb(α, β) = M + i

] ≤
∞∑

i=t

Pr[XM+i = 1]

≤
∞∑

i=t

|α − β|
∆M+i

=

∞∑

i=t

|α − β|
2M · 2i ≤

∞∑

i=t

|α − β|
(|α − β| /2) 2i ≤

∞∑

i=t

21−i = 22−t.

Corollary 4.1.8 Let α, β ∈ P ⊆ [1/2, 3/4] be two numbers, and consider a random number b ∈ [0, 1/2]. Then, for
any parameters c > 1, we have Pr

[
Lb(α, β) > lg2 |α − β| + c lg n

] ≤ 4/nc, where n = |P|.

4.1.3.2 Higher dimensional quadtrees

Let P be a set of n points in [1/2, 3/4]d, and pick uniformly and randomly a point b ∈ [0, 1/2]d, and consider the
shifted compressed quadtree T of P having b + [0, 1]d as the root cell.

Consider any two points p, q ∈ P, their lca(p, q), and the one dimensional quadtrees T1, . . . ,Td built on each of the
d coordinates of the point set. Since the quadtree T is the combination of these one dimensional quadtrees T1, . . . ,Td,
the level where p and q get separated in T, is the first level in any of the quadtrees T1, . . . ,Td where p and q are
separated. In particular, the level of the least common ancestor (i.e., the level of lca(p, q)) is

Lb(p, q) =
d

max
i=1
Lbi (pi, qi) . (4.1)

As in the one dimensional case (see Remark 4.1.6) the value of Lb(p, q) is independent of the other points of P.
Intuitively, Lb(p, q) is a well behaved random variable, as testified by the following lemma. Since we do not use

this lemma anywhere directly we leave its proof as an exercise to the reader.

Lemma 4.1.9 For any two fixed points p, q ∈ P, the following properties hold.
(A) For any integer t > 0, we have that Pr

[
Lb(p, q) > lg ‖p − q‖ + t

]
≤ 4d/2t.

(B) E[Lb(p, q)] ≤ lg ‖p − q‖ + lg d + 6.
(C) Lb(p, q) ≥ lg ‖p − q‖ − lg d − 3.
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4.2 Hierarchical Representation of a Point Set
In the following, it will be convenient to carry out our discussion in a more general setting than low dimensional
Euclidean space. In particular, we will use the notion of metric space.

Definition 4.2.1 A metric space is a pair (X,d) where X is a set and d : X × X → [0,∞) is a metric, satisfying the
following axioms: (i) dM(x, y) = 0 if and only if x = y, (ii) dM(x, y) = dM(y, x), and (iii) dM(x, y)+dM(y, z) ≥ dM(x, z)
(triangle inequality).

Specifically, we are given a metric spaceM with a metric d. We will slightly abuse notations by usingM to refer
to the underlying set of points.

4.2.1 Low Quality Approximation by HST

We will use the following special type of metric space.

Definition 4.2.2 Let P be a set of elements, and H be a tree having the elements of P as leaves. The tree H defines
a hierarchically well-separated tree (HST) over the points of P, if for each vertex u ∈ H there is associated a label
∆(u) ≥ 0, such that ∆(u) = 0 if and only if u is a leaf of H. Furthermore, the labels are such that if a vertex u is a child
of a vertex v then ∆(u) ≤ ∆(v). The distance between two leaves x, y ∈ H is defined as ∆(lca(x, y)), where lca(x, y) is
the least common ancestor of x and y in H.

If every internal node of H has exactly two children, we will refer to it as being a binary HST (BHST).

It is easy to verify that the distances defined by a HST comply with the triangle inequality, and as such it defines
a metric. The usefulness of a HST is that the metric it defines has a very simple structure, and it can be easily
manipulated algorithmically.

Example 4.2.3 Consider a point set P ⊆ IRd, and a compressed quadtree T storing P, where for each node v ∈ T, we
set the diameter of 2v to be its label. It is easy to verify that this is a HST.

For convenience, from now on, we will work with BHSTs, since any HST can be converted into a binary HST
in linear time while retaining the underlying distances. We will also associate with every vertex u ∈ H, an arbi-
trary representative point repu ∈ Pu (i.e., a point stored in the subtree rooted at u). We also require that repu ∈{
repv

∣∣∣∣ v is a child of u
}
.

Definition 4.2.4 A metric space N is said to t-approximate the metric M, if they are defined over the same set of
points P and dM(u, v) ≤ dN (u, v) ≤ t · dM(u, v), for any u, v ∈ P.

It is not hard to see that any n-point metric is (n − 1)-approximated by some HST.

Lemma 4.2.5 Given a weighted connected graph G on n vertices and m edges, it is possible to construct, in O(n log n+

m) time, a binary HST H that (n − 1)-approximates the shortest path metric of G.

Proof : Compute the minimum spanning tree T of G in O(n log n + m) time®.
Sort the n − 1 edges of T in non-decreasing order, and add them to the graph one by one, starting with an empty

graph on V(G). The HST is built bottom up. At each stage, we have a collection of HSTs, each corresponding to a
connected component of the current graph. Each added edge merges two connected components, and we merge the
two corresponding HSTs into a single HST by adding a new common root v for the two HST, and labeling this root
with the edge’s weight times |Pv| − 1, where Pv is the set of points stored in this subtree. This algorithm is only a slight
variation on Kruskal algorithm, and hence has the same running time.

Let H denote the resulting HST. As for the approximation factor, let x, y be any two vertices of G, and e be the first
edge added such that x and y are in the same connected component C, created by merging two connected components
Cx and Cy. Observe that e must be the lightest edge in the cut between Cx and the rest of the minimum spanning tree

®Using, say, Prim’s algorithm implemented using a Fibonacci heap.



CHAPTER 4. RANDOM PARTITION VIA SHIFTING 35

T, and as such, any path between x and y in G must contain an edge of weight at least ω(e). Now, e is the heaviest
edge in C and

dG(x, y) ≤ (|C| − 1)ω(e) ≤ (n − 1)ω(e) ≤ (n − 1)dG(x, y) ,

since ω(e) ≤ dG(x, y). Now, dH(x, y) = (|C| − 1)ω(e), and the claim follows.

Since any n-point metric P ⊆ M can be represented using the complete graph over n vertices (with edge weights
ω(xy) = dM(x, y) for all x, y ∈ P), we get the following.

Corollary 4.2.6 For a set P of n points in a metric spaceM, one can compute, in O(n2) time, a HST H that (n − 1)-
approximates the metric dM.

One can improve the running in low-dimensional Euclidean space (the approximation factor deteriorates slightly).

Corollary 4.2.7 For a set P of n points in IRd, one can construct, in O(n log n) time (the constant in the O(·) depends
exponentially on the dimension), a BHST H that (2n − 2)-approximates the distances of points in P. That is, for any
p, q ∈ P, we have dH(p, q) /(2n − 2) ≤ ‖p − q‖ ≤ dH(p, q).

Proof : We remind the reader, that in IRd, one can compute a 2-spanner for P of size O(n), in O(n log n) time (see
Theorem 3.2.2p21). Let G be this spanner, and apply Lemma 4.2.5 to this spanner. Let H be the resulting HST metric.
For any p, q ∈ P, we have ‖p − q‖ ≤ dH(p, q) ≤ (n − 1)dG(p, q) ≤ 2(n − 1) ‖p − q‖.

Corollary 4.2.7 is unique to IRd since for general metric spaces no HST can be computed in subquadratic time.

4.2.2 Fast and Dirty HST in High Dimensions
The above construction of HST has exponential dependency on the dimension. We next show how one can get an
approximate HST of low quality but in polynomial time in the dimension.

Lemma 4.2.8 Let P be a set of n points in [1/2, 3/4]d, and pick uniformly and randomly a point b ∈ [0, 1/2]d, and
consider the shifted compressed quadtree T of P having b + [0, 1]d as the root cell. Then, for any constant c > 1, with
probability ≥ 1 − 4d/nc−2, we have that for all i = 1, . . . , d and for all pairs of points of P, it holds

Lbi (pi, qi) ≤ lg |pi − qi| + c lg n. (4.2)

In particular, this property implies that the compressed quadtree T is a 2
√

dnc-approximate HST for P.

Proof : Consider two points p, q ∈ P, and a coordinate i. By Corollary 4.1.8, we have that

Pr
[
Lbi (pi, qi) > lg |pi − qi| + c lg n

] ≤ 4/nc.

There are d possible coordinates, and
(

n
2

)
possible pairs, and as such, by the union bound, this does not happen for any

pair points of P, for any coordinate, with probability ≥ 1 − d
(
n
2

)
4
nc ≥ 1 − 2d/nc−2.

As such, with probability ≥ 1 − 2d/nc, the level of the lca of any two points p, q ∈ P is at most

U = Lb(p, q) =
d

max
i=1
Lbi (pi, qi) ≤ max

(
lg |pi − qi| + c lg n

) ≤
⌈
lg ‖p − q‖ + c lg n

⌉
,

by Eq. (4.1). The diameter of a cell at level U(p, q) is at most
√

d2U ≤ 2
√

d ‖p − q‖ nc. Namely, T is a 2
√

dnc-
approximate HST.

Verifying quickly that T is an acceptable HST (as far as the quality of approximation goes) is quite challenging in
general. Fortunately for us, one can easily check that Eq. (4.2) holds.

Claim 4.2.9 One can verify that Eq. (4.2) holds for the quadtree T computed by the algorithm of Lemma 4.2.8 in
O
(
dn log n

)
time.

Proof : If Eq. (4.2) fails then it must be that there are two points p, q ∈ P and a coordinate j such that Lb j

(
p j, q j

)
>

lg
∣∣∣p j − q j

∣∣∣ + t, for t = c lg n.
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p p′

q′ q

wNow, observe that if there are two such bad points for the jth coordinate, then
there are two bad points that are consecutive in the order along the jth coordinate.
Indeed, consider w = lca(p j, q j) in the one dimensional compressed quadtree T j of P
on the jth coordinate. Let p′ be the point (resp. q′) with maximal (resp. minimal)
value in the jth coordinate that is still in the left (resp. right) subtree of w, see figure
on the right. Clearly, (i) lca(p′, q′) = w, (ii)

∣∣∣∣p′j − q′j
∣∣∣∣ ≤

∣∣∣p j − q j

∣∣∣, and (iii) p′ and q′

are consecutive in the ordering of P according to the values in the jth coordinate. As
such, Lb j

(
p′j, q

′
j

)
= Lb j

(
p j, q j

)
> lg

∣∣∣p j − q j

∣∣∣ + t ≥ lg
∣∣∣∣p′j − q′j

∣∣∣∣ + t. Namely, Eq. (4.2)
fails for p′ and q′ on the jth coordinate.

As such, to verify Eq. (4.2) on the jth coordinate, we sort the points according
to their order on the jth coordinate, and verify Eq. (4.2) for each consecutive pair. This takes O(n log n), time per
coordinate, since computing Lb j (·, ·) takes constant time. Doing this for all d coordinates takes O

(
dn log n

)
time

overall.

Theorem 4.2.10 Given a set P of n points in IRd, for d ≤ n, one can compute a 2
√

dn5-approximate HST of P in
O(dn log n) expected time.

Proof : Set c = 5, use the algorithm of Lemma 4.2.8, and verify it, as described in Claim 4.2.9. If the compressed
quadtree fails, we repeat the construction until succeeding. Computing and verifying the compressed quadtree takes
O
(
dn log n

)
time, by Theorem 2.3.9p15 and Claim 4.2.9. Now, since the probability of success is ≥ 1−4d/nc−2 ≥ 1−1/n

(assuming n ≥ 3), it follows that the algorithm would have to perform, in expectation, 1/(1 − 1/n) ≤ 2 iterations till it
succeeds.

4.3 Low Quality ANN Search
We are interested in answering approximate nearest neighbor (ANN) queries in IRd. Namely, given a set of n points
P in IRd, and a parameter ε > 0, we want to preprocess P, such that given a query point q, we can compute (quickly) a
point p ∈ P, such that p is a (1 + ε)-approximate nearest-neighbor to q in P. Formally, ‖q − p‖ ≤ (1 + ε)d(q,P), where
d(q,P) = minp∈P ‖q − p‖.

4.3.1 The data-structure and search procedure.
Let P be a set of n points in IRd, contained inside the cube [1/2, 3/4]d. Let b be a random vector in the cube [0, 1/2]d,
and consider the compressed shifted quadtree T having the hypercube b + [0, 1]d as its root. We choose for each node
v of the quadtree a representative point repv ∈ Pv.

Given a query point q ∈ [1/2, 3/4]d, let v be the lowest node of T whose region rgv contains q.
(A) If repv is defined then we return it as the ANN.
(B) If repv is not defined, then it must be that v is an empty leaf, so let u be its parent, and return repu as q’s ANN.

4.3.2 Analysis
Let us consider the above search procedure. When answering a query, there are several possibilities:
(A) If rgv is a cube (i.e., v is a leaf) and v stores a point p ∈ Q inside it, then we return p as the ANN.
(B) If v is a leaf but there is no point associated with it.

rgv

rguIn this case repv is not defined, and we return repu, where u = p(v). Observe, that∥∥∥q − repu

∥∥∥ ≤ 2diam
(
rgv

)
. This case happens if the parent u of v has two children that

contains points of P, and v is one of the empty children. This situation is depicted in the
figure on the right.

(C) If rgv is an annulus, then v is a compressed node. In this case, we return repv as the ANN. Observe that d
(
q, repv

) ≤
diam

(
rgv

)
.

In all these cases, the distance to the ANN found is at most 2diam(2v).
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Lemma 4.3.1 For any τ > 1, and a query point q, the above data-structure returns a τ-approximation to the distance
to the nearest neighbor of q in P, with probability ≥ 1 − 4d3/2/τ.

Proof : Let p be q’s nearest neighbor in P (i.e., = ‖q − p‖ = d(q,P)). Let b be the ball with diameter ‖q − p‖ that
contains q and p (i.e., this is the diametrical ball of qp). Consider the lowest node u in the compressed quadtree that
contains b completely. By construction, the node v fetched by the point-location query for q must be either u or one
of its descendants. As such, the ANN returned is of distance ≤ 2diam(2v) ≤ 2diam(2u).

Let ` = ‖q − p‖. By Lemma 4.1.3, the probability that b is fully contained inside a single cell in the ith level of T
is at least 1 − d`/2i (i is a non-positive integer). In such a case, let 2 be this grid cell, and observe that the distance to
the ANN returned is at most 2diam(2) ≤ 2

√
d2i. As such, the quality of the ANN returned in such a case is bounded

by 2
√

d2i/`. If we want this ANN to be of quality τ, then we require that

2
√

d2i/` ≤ τ =⇒ 2i ≤ `τ

2
√

d
=⇒ i ≤ lg

`τ

2
√

d
.

In particular, setting i =
⌊
lg

(
`τ/2

√
d
)⌋

, we get that the returned point is a τ-ANN with probability at least

1 − d`
2i ≥ 1 − 4d3/2`

`τ
= 1 − 4d3/2

τ
,

implying the claim.

One thing we glossed over in the above is how to handle queries outside the square [1/2, 3/4]d. This can be handled
by scaling the input point set P to lie inside a hypercube of diameter (say) 1/n2 centered at the middle of this domain
[1/2, 3/4]d. Let T be the affine transformation (i.e., it is scaling and translation) that realizing this. Clearly, the ANN
to q in P is the point corresponding to the ANN to T (q) in T (P). In particular, given a query point q we answer the
ANN query on the transformed point set T (P) using the query point T (q).

Now, if the query point T (q) is outside [1/2, 3/4]d then any point of T (P) is (1 + 1/n)-ANN to the query point as
can be easily verified.

Combining Lemma 4.3.1 with Theorem 2.3.9, we get the following result.

Theorem 4.3.2 For a point set P ⊆ [1/2, 3/4]d, a randomly shifted compressed quadtree T of P can answer ANN
queries in O(d log n) time. The time to build this data-structure is O(dn log n). Furthermore, for any τ > 1, the
returned point is a τ-ANN with probability ≥ 1 − 4d3/2/τ.

Remark 4.3.3 (A) Theorem 4.3.2 is usually interesting for τ being polynomially large in n, where the probability of
success is quite high.

(B) Note, that even for a large τ, this data-structure does not necessarily return the guaranteed quality of approxi-
mation for all the points in space. One can prove that this data-structure works with high probability to all the points
in space (but the guarantee of approximation deteriorates, naturally).

4.4 Bibliographical notes
The approximation algorithm for covering by unit disks is due to Hochbaum and Mass [HM85], and our presentation
is a variant of their algorithm. The idea of HSTs was used by Bartal [Bar98] to get a similar result for more general
settings.

The idea of shifted quadtrees can be derandomized [Cha98] and still yield interesting results. This is done by pick-
ing the shift carefully and inspecting the resulting Q-order. The idea of doing point location queries in a compressed
quadtree to answer ANN is also from [Cha98] but it is probably found in much earlier work.



Chapter 5

Approximate Nearest Neighbor Search in
Low Dimension

“Napoleon has not been conquered by man. He was greater than all of us. But god punished him because he relied on his own
intelligence alone, until that prodigious instrument was strained to breaking point. Everything breaks in the end.”

– Carl XIV Johan, King of Sweden.

5.1 Introduction
Let P be a set of n points in IRd. We would like to preprocess it, such that given a query point q, one can determine
the closest point in P to q quickly. Unfortunately, the exact problem seems to require prohibitive preprocessing time.
(Namely, computing the Voronoi diagram of P, and preprocessing it for point-location queries. This requires (roughly)
O(ndd/2e) time.)

Instead, we will specify a parameter ε > 0, and build a data-structure that answers (1 + ε)-approximate nearest
neighbor queries.

Definition 5.1.1 For a set P ⊆ IRd, and a query point q, we denote by nn(q) = nn(q,P) the closest point (i.e., nearest
neighbor) in P to q. We denote by d(q,P) the distances between q and its closest point in P; that is d(q,P) =

‖q − nn(q)‖.
For a query point q, and a set P of n points in IRd, a point s ∈ P is an (1 + ε)-approximate nearest neighbor (or

just (1 + ε)-ANN) if ‖q − s‖ ≤ (1 + ε)d(q,P). Alternatively, for any t ∈ P, we have ‖q − s‖ ≤ (1 + ε) ‖q − t‖.
This is yet another instance where solving the bounded spread case is relatively easy. (We remind the reader that

the spread of a point set P, denoted by Φ(P), is the ratio between the diameter and the distance of the closest pair of
P.)

5.2 The bounded spread case
Let P be a set of n points contained inside the unit hypercube in IRd, and let T be a quadtree of P, where diam(P) =

Ω(1). We assume that with each (internal) node u of T, there is an associated representative point, repu, such that repu
is one of the points of P stored in the subtree rooted at u.

Let q be a query point and let ε > 0 be a parameter, here our purpose is to find a (1 + ε)-ANN to q in P.

Idea of algorithm. The algorithm would maintain a set of nodes of T that might contain the ANN to the query
point. Each such node as a representative point associated with it, and we compute its distance to the query point, and
maintain the nearest neighbor found so far. At each stage, the search would refined by replaced a node by its children
(and computing the distance from the query point to all the new representatives of these new nodes).

38
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rcurr

(1 − ε/2)rcurr

x

p

The key observation is that we need to continue searching in a subtree of a
node, only if the node can contain a point that is significantly closer to the query
point that the current best candidate found.

We Keep only the “promising” nodes, and continue this search till there are
no more candidates to check. We claim that we had found the ANN to q, and
furthermore the query time is fast. This idea is depicted on the right. Out the
three nodes currently in the candidate set, only of child of them (i.e., x) has the
potential to contain a better ANN to q than the current one (i.e., p).

Formally, let p be the current best candidate found so far, and its distance
from q be rcurr. Now, consider a node w in T, and observe that the point set Pw,
stored in the subtree of w, might contain a “significantly” nearer neighbor to q
only if it contains a point s ∈ rgw ∩ P such that ‖q − s‖ < (1 − ε/2)rcurr. A conservative lower bound on the distance
of any point in rgw to q is

∥∥∥q − repw

∥∥∥ − diam(2w). In particular, if
∥∥∥q − repw

∥∥∥ − diam(2w) > (1 − ε/2)rcurr then we can
abort the search for ANN in the subtree of w.

The algorithm. Let A0 = {root(T )}, and let rcurr =
∥∥∥q − reproot(T )

∥∥∥. The value of rcurr is the distance to the closest
neighbor of q that was found so far by the algorithm.

In the ith iteration, for i > 0, the algorithm expands the nodes of Ai−1 to get Ai. Formally, for v ∈ Ai−1, let Cv be
the set of children of v in T and 2v denote the cell (i.e., region) v corresponds to. For every node w ∈ Cv, we compute

rcurr ← min
(
rcurr ,

∥∥∥q − repw

∥∥∥
)
.

The algorithm checks if ∥∥∥q − repw

∥∥∥ − diam(2w) < (1 − ε/2)rcurr, (5.1)

and if so, it adds w to Ai. The algorithm continues in this expansion process till all the elements of Ai−1 were considered,
and then it moves to the next iteration. The algorithm stops when the generated set Ai is empty. The algorithm returns
the point realizing the value of rcurr as the ANN.

The set Ai is a set of nodes of depth i in the quadtree that the algorithm visits. Note, all these nodes belong to
the canonical grid G2−i of level −i, where every canonical square has sidelength 2−i. (Thus, nodes of depth i in the
quadtree are of level −i. This is somewhat confusing but it in fact makes the presentation simpler.)

Correctness. Note that the algorithm adds a node w to Ai only if the set Pw might contain points which are closer to
q than the (best) current nearest neighbor the algorithm found, where Pw is the set of points stored in the subtree of w.
(More precisely, Pw might contain a point which is (1 − ε/2) closer to q than any point encountered so far.)

(1 − ε
2 )rcurr

nn(q)

q
r curr

repwConsider the last node w inspected by the algorithm such that nn(q) ∈ Pw. Since
the algorithm decided to throw this node away, we have, by the triangle inequality,
that

‖q − nn(q)‖ ≥
∥∥∥q − repw

∥∥∥ −
∥∥∥repw − nn(q)

∥∥∥
≥

∥∥∥q − repw

∥∥∥ − diam(2w) ≥ (1 − ε/2)rcurr.

Thus, ‖q − nn(q)‖ /(1 − ε/2) ≥ rcurr. However, 1/(1 − ε/2) ≤ 1 + ε, for 1 ≥ ε > 0,
as can be easily verified. Thus, rcurr ≤ (1 + ε)d(q,P), and the algorithm returns (1 + ε)-ANN to q.



CHAPTER 5. APPROXIMATE NEAREST NEIGHBOR SEARCH IN LOW DIMENSION 40

Cell size
≈ dP(q)

Cell size
≈ εdP(q)︸     ︷︷     ︸

O(1/εd)

Running time analysis. Before barging into a formal proof of the
running time of the above search procedure, it is useful to visualize the
execution of the algorithm. It visits the quadtree level by level. As long
as the level’s grid cells are bigger than the ANN distance r = d(q,P),
the number of nodes visited is a constant (i.e., |Ai| = O(1)). (This is not
obvious, and at this stage the reader should take this statement with due
skepticism.) This number “explodes” only when the cell size become
smaller than r, but then the search stops when we reach grid size O(εr).
In particular, since the number grid cells visited (in the second stage)
grows exponentially with the level, we can use the number of nodes
visited in the bottom level (i.e., O(1/εd)) to bound the query running time for this part of the query.

Lemma 5.2.1 Let P be a set of n points contained inside the unit hypercube in IRd, and let T be a quadtree of P, where
diam(P) = Ω(1). Let q be a query point, and let ε > 0 be a parameter. An (1 + ε)-ANN to q can be computed in
O
(
ε−d + log(1/$)

)
time, where $ = d(q,P).

Proof : The algorithm is described above. We are only left with the task of bounding the query time. Observe that if a
node w ∈ T is considered by the algorithm, and diam(2w) < (ε/4)$ then

∥∥∥q − repw

∥∥∥ − diam(2w) ≥
∥∥∥q − repw

∥∥∥ − (ε/4)$ ≥ rcurr − (ε/4)rcurr ≥ (1 − ε/4)rcurr,

which implies that neither w nor any of its children would be inserted into the sets A1, . . ., Am, where m is the depth T,
by Eq. (5.1). Thus, no nodes of depth ≥ h =

⌈− lg($ε/4)
⌉

are being considered by the algorithm.
Consider the node u of T of depth i containing nn(q,P). Clearly, the distance between q and repu is at most

`i = $ + diamu = $ +
√

d2−i. As such, in the end of the ith iteration, we have rcurr ≤ `i, since the algorithm had
inspected u.

Thus, the only cells of G2−i−1 that might be considered by the algorithm are the ones in distance ≤ `i from q. Indeed,
in the end of the ith iteration, rcurr ≤ `i. As such, any node of G2−i−1 (i.e., nodes considered in the (i + 1)th iteration of
the algorithm) that is in distance larger than rcurr from q can not improve the distance to the current nearest neighbor
and can just be thrown away if it is in the queue. (We charge the operation of putting a node into the queue to its
parent. As such, nodes that get inserted and deleted in the next iteration are paid for by their parents.)

The number of such relevant cells (i.e., cells that the algorithm dequeues and do not get immediately thrown out)
is the number of grid cells of G2−i−1 that intersect a box of sidelength 2`i centered at q; that is

ni =

(
2
⌈
`i

2−i−1

⌉)d

= O


1 +

$ +
√

d2−i

2−i−1


d = O

((
1 +

$

2−i−1

)d
)

= O
(
1 +

(
2i$

)d
)
,

since for any a, b ≥ 0 we have (a + b)d ≤ (2 max(a, b))d ≤ 2d
(
ad + bd

)
. Thus, the total number of nodes visited is

h∑

i=0

ni = O



d− lg($ε/4)e∑

i=0

(
1 +

(
2i$

)d
)
,

 = O

lg
1
$ε

+

(
$

$ε/4

)d = O
(
log

1
$

+
1
εd

)
,

and this also bounds the overall query time.

One can apply Lemma 5.2.1 to the case that the input has spread bounded from above. Indeed, if the distance
between the closest pair of points of P is µ = CP(P), then the algorithm would never search in cells that have diameter
≤ µ/8. Indeed, no such nodes would exist in the quadtree, to begin with, since the parent node of such a node would
contain only a single point of the input. As such, we can replace $ by µ in the above argumentation.

Lemma 5.2.2 Let P be a set of n points in IRd, and let T be a quadtree of P, where diam(P) = Ω(1). Given a query
point q and 1 ≥ ε > 0, one can return an (1 + ε)-ANN to q in O

(
1/εd + log Φ(P)

)
time, where Φ(P) is the spread of P.

A less trivial task, is to adapt the algorithm, so that it uses compressed quadtrees. To this end, the algorithm would
still handle the nodes by levels. This requires us to keep a heap of integers in the range 0,−1, . . . ,− ⌊

lg Φ(P)
⌋
. This
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can be easily done by maintaining an array of size O(log Φ(P)), where each array cell, maintains a linked list of all
nodes with this level. Clearly, an insertion/deletion into this heap data-structure can be handled in constant time by
augmenting it with a hash table. Thus, the above algorithm would work for this case after modifying it to use this
“level” heap instead of just the sets Ai.

Theorem 5.2.3 Let P be a set of n points in IRd. One can preprocess P in O(n log n) time, and using linear space,
such that given a query point q and parameter 1 ≥ ε > 0, one can return a (1 + ε)-ANN to q in O

(
1/εd + log Φ(P)

)

time. In fact, the query time is O(1/εd + log(diam(P) /$)), where $ = d(q,P).

5.3 ANN – the unbounded general case
The Snark and the unbounded spread case. (Or a meta-philosophical pretentious discussion that the reader might
want to skip. The reader might consider this to be a footnote of a footnote, which finds itself inside the text because of
lack of space in the bottom of the page.) We have a data-structure that supports insertions, deletions and approximate
nearest neighbor reasonably quickly. The running time for such operations is roughly O(log Φ(P)) (ignoring additive
terms in 1/ε). Since the spread of P in most real world applications is going to be bounded by a constant degree
polynomial in n, it seems this is sufficient for our purposes, and we should stop now, while ahead in the game. But the
nagging question remains: If the spread of P is not bounded by something reasonable, what can be done?

The rule of thumb is that Φ(P) can always be replaced by n (for this problem, but also in a lot of other problems).
This usually requires some additional machinery, and sometimes this machinery is quite sophisticated and complicated.
At times, the search for the ultimate algorithm that can work for such “strange” inputs, looks like the Hunting of the
Snark [Car76] – a futile waste of energy looking for some imaginary top-of-the-mountain, which has no practical
importance. (At times the resulting solution is so complicated, it feels like a Boojum [Car76].)

Solving the bounded spread case can be acceptable in many situations, and it is the first stop in trying to solve the
general case. However, solving the general case provides us with more insights on the problem, and in some cases
leads to more efficient solutions than the bounded spread case.

With this caveat emptor warning duly given, we plunge ahead into solving the ANN for the unbounded spread
case.

Plan of attack. To answer ANN query in the general case, we will first get a fast rough approximation. Next, using
a compressed quadtree, we will find a constant number of relevant nodes, and apply Theorem 5.2.3 to those nodes.
This will yield the required approximation. Before solving this problem, we need a minor extension of the compressed
quadtree data-structure.

Extending a compressed quadtree to support cell queries. Let 2̂ be a canonical grid cell (we remind the reader
that this is a cell of the grid G2i , for some integer i ≤ 0). Given a compressed quadtree T̂ , we would like to find the
single node v ∈ T̂ , such that P∩ 2̂ = Pv. (Note, that the node v might be compressed, and the square associated with it
might be much larger than 2̂, but its only child w is such that 2w ⊆ 2̂ ⊆ 2v. However, the annulus 2v ⊆ 2w contains
no input point.) We will refer to such query as a cell query.

It is not hard to see that the quadtree data-structure can be modified to support cell queries in logarithmic time (it’s
a glorified point-location query), and we omit the easy but tedious details.

Lemma 5.3.1 One can perform a cell query in a compressed quadtree T̂ , in O(log n) time, where n is the size of
T̂ . Namely, given a query canonical cell 2̂, one can find, in O(log n) time, the node w ∈ T̂ such that 2w ⊆ 2̂ and
P ∩ 2̂ = Pw.

5.3.1 Putting things together – Answering ANN Queries

Let P be a set of n points in IRd contained in the unit hypercube. We build the compressed quadtree T̂ of P, so that
it supports cell queries, using Lemma 5.3.1. We will also need a data-structure that supports very rough ANN queries

Buyer beware in Latin.
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quickly. We describe one way to build such a data-structure in the next section. We will use the result we derived by
using a shifted quadtree and a simple point-location query, see Theorem 4.3.2p37.

Let P be a set of n points in IRd. One can build a data structure TR, in O(n log n)
time, such that given a query point q ∈ IRd, one can return a (1 + 4n)-ANN of q in
P in O(log n) time.

Given a query point q, using TR, we compute a point u ∈ P, such that d(q,P) ≤ ‖u − q‖ ≤ (1 + 4n)d(q,P). Let
R = ‖u − q‖ and r = ‖u − q‖ /(4n + 1). Clearly, r ≤ d(q,P) ≤ R. Next, compute L =

⌈
lg R

⌉
, and let C be the set of

cells of G2L that are in distance ≤ R from q; that is, C is the set of grid cells of G2L that (completely) covers ball(q,R).
Clearly, nn(q,P) ∈ ball(q,R) ⊆ ⋃

2∈C 2. Next, for each cell 2 ∈ C, we compute the node v ∈ T̂ such that P ∩2 = Pv,
using a cell query (i.e., Lemma 5.3.1). (Note, that if 2 does not contain any point of P this query would return a leaf
or a compressed node that its region contains 2, and it might contain at most one point of P.) Let V be the resulting
set of nodes of T̂ .

For each node of v ∈ V , we now apply the algorithm of Theorem 5.2.3 to the compressed quadtree rooted at v. We
return the nearest neighbor found.

Since |V | = O(1), and diam(Pv) = O(R), for all v ∈ V , the query time is

∑

v∈V
O
(

1
εd

+ log
diam(Pv)

r

)
= O


1
εd

+
∑

v∈V
log

diam(Pv)
r

 = O


1
εd

+
∑

v∈V
log

R
r



= O
(

1
εd

+ log n
)
.

As for the correctness, observe that there is a node w ∈ V , such that nn(q,P) ∈ Pw. As such, when we apply the
algorithm of Theorem 5.2.3 to w, it would return us a (1 + ε)-ANN to q.

Theorem 5.3.2 Let P be a set of n points in IRd. One can construct a data-structure of linear size, in O(n log n)
time, such that given a query point q ∈ IRd, and a parameter 1 ≥ ε > 0, one can compute a (1 + ε)-ANN to q in
O(1/εd + log n) time.

5.4 Bibliographical notes
The presentation of the ring tree follows the recent work of Har-Peled and Mendel [HM06]. Ring trees are probably
an old idea. A more elaborate but similar data-structure is described by Indyk and Motwani [IM98]. Of course,
the property that “thick” ring separators exist, is inherently low dimensional, as the regular simplex in n dimensions
demonstrates. One option to fix this is to allow the rings to contain points, and to replicate the points inside the ring in
both subtrees. As such, the size of the resulting tree is not necessarily linear. However, careful implementation yields
linear (or small) size. This and several additional ideas are used in the construction of the cover tree of Indyk and
Motwani [IM98].

Section 5.2 is a simplification of Arya et al. [AMN+98] work. Section 5.3 is also inspired to a certain extent by
Arya et al. work, although it is essentially a simplification of Har-Peled and Mendel [HM06] data-structure to the
case of compressed quadtrees. In particular, we believe that the data-structure presented is conceptually simpler than
previously published work.

There is a huge amount of literature on approximate nearest neighbor search, both in low and high dimensions in the
theory, learning and database communities. The reason for this lies in the importance of this problem, on special input
distributions see in practice, different computation models (i.e., I/O-efficient algorithms), search in high-dimensions,
and practical efficiency.

Liner space. In low dimensions, the seminal work of Arya et al. [AMN+98], mentioned above, was the first to offer
linear size data-structure, with logarithmic query time, such that the approximation quality is specified with the query.
The query time of Arya et al. is slightly worse than the running time of Theorem 5.3.2, since they maintain a heap
of cells, always handling the cell closest to the query point. This results in query time O(ε−d log n). It can be further
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improved to O(1/εd log(1/ε) + log n) by observing that this heap has only very few delete-mins, and many insertions.
This observation is due to Duncan [Dun99].

Instead of having a separate ring-tree, Arya et al. rebalances the compressed quadtree directly. This results in
nodes, which correspond to cells that have the shape of an annulus (i.e., the region formed by the difference between
two canonical grid cells).

Duncan [Dun99] and some other authors offered a data-structure (called the BAR-tree) with similar query time,
but it is seems to be inferior, in practice, to Arya et al. work, for the reason that while the regions the nodes correspond
to are convex, they have higher descriptive complexity, and it is harder to compute the distance of the query point to a
cell.

Faster query time. One can improve the query time if one is willing to specify ε during the construction of the
data-structure, resulting in a trade off between space and query time. In particular, Clarkson [Cla94] showed that one
can construct a data-structure of (roughly) size O(n/ε(d−1)/2), and query time O(ε−(d−1)/2 log n). Chan simplified and
cleaned up this result [Cha98] and presented also some other results.

Details on Faster Query Time. A set of points Q is
√
ε-far from a query point q, if the

∥∥∥p − cQ

∥∥∥ ≥ diam(Q) /
√
ε,

where cQ is some point of Q. It is easy to verify that if we partition space around cQ into cones with central angle
O(
√
ε) (this requires O(1/ε(d−1)/2) cones), then the most extreme point of Q in such a cone ψ, furthest away from cQ,

is the (1 + ε)-approximate nearest neighbor for any query point inside ψ which is
√
ε-far. Namely, we precompute

the ANN inside each cone, if the point is far enough. Furthermore, by careful implementation (i.e., grid in the angles
space), we can decide, in constant time, which cone the query point lies in. Thus, using O(1/ε(d−1)/2) space, we can
answer (1 + ε)-ANN queries for q, if the query point is

√
ε-far, in constant time.

Next, construct this data-structure for every set Pv, for v ∈ T̂ (P), where T̂ (P) is a compressed quadtree for P.
This results in a data-structure of size O(n/ε(d−1)/2). Given a query point q, we use the algorithm of Theorem 5.3.2,
and stop for a node v as soon Pv is

√
ε-far, and then we use the secondary data-structure for Pv. It is easy to verify

that the algorithm would stop as soon as diam(2v) = O
(√
εd(q,P)

)
. As such, the number of nodes visited would be

O(log n + 1/εd/2), and bound on the query time is identical.
Note, that we omitted the construction time (which requires some additional work to be done efficiently), and our

query time is slightly worse than the best known. The interested reader can check out the work by Chan [Cha98],
which is somewhat more complicated than what is outlined here.

Even faster query time. The first to achieve O(log(n/ε)) query time (using near linear space), was Har-Peled
[Har01b], using space roughly O(nε−d log2 n). This was later simplified and improved by Arya and Malamatos
[AM02], who presented a data-structure with the same query time, and of size O(n/εd). Those data-structure relies
on the notion of computing approximate Voronoi diagrams and performing point location queries in those diagrams.
By extending the notion of approximate Voronoi diagrams, Arya, Mount and Malamatos [AMM02] showed that one
can answer (1 + ε)-ANN queries in O(log(n/ε)) time, using O(n/ε(d−1)) space. On the other end of the spectrum, they
showed that one can construct a data-structure of size O(n) and query time O(log n + 1/ε(d−1)/2) (note, that for this
data-structure ε > 0 has to be specified in advance). In particular, the later result breaks a space/query time tradeoff

that all other results suffer from (i.e., the query time multiplied by the construction time has dependency of 1/εd on ε).

Practical Considerations Arya et al. [AMN+98] implemented their algorithm. For most inputs, it is essentially
a kd-tree. The code of their library was carefully optimized and is very efficient. In particular, in practice, I would
expect it to beat most of the algorithms mentioned above. The code of their implementation is available online as a
library [AM98].

Higher Dimensions. All our results have exponential dependency on the dimension, in query and preprocessing time
(although the space can be probably be made subexponential with careful implementation). Getting a subexponential
algorithm requires a completely different technique.

Stronger computation models. If one assume that the points have integer coordinates, in the range [1,U], then
approximate nearest-neighbor queries can be answered in (roughly) O(log log U + 1/εd) time [AEIS99], or even
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O(log log(U/ε)) time [Har01b]. The algorithm of Har-Peled [Har01b] relies on computing a compressed quadtree
of height O(log(U/ε)), and performing fast point-location query in it. This only requires using the floor function and
hashing (note, that the algorithm of Theorem 5.3.2 uses the floor function and hashing during the construction, but it
is not used during the query). In fact, if one is allowed to slightly blowup the space (by a factor Uδ, where δ > 0 is an
arbitrary constant), the ANN query time can be improved to constant [HM04].

By shifting quadtrees, and creating d + 1 quadtrees, one can argue that the approximate nearest neighbor must lie
in the same cell (and of the “right” size) of the query point in one of those quadtrees. Next, one can map the points
into a real number, by using the natural space filling curve associated with each quadtree. This results in d + 1 lists of
points. One can argue that a constant approximate neighbor must be adjacent to the query point in one of those lists.
This can be later improved into (1 + ε)-ANN by spreading 1/εd points. This simple algorithm is due to Chan [Cha02].

The reader might wonder why we bothered with a considerably more involved algorithm. There are several reasons:
(i) This algorithm requires the numbers to be integers of limited length (i.e., O(log U) bits), and (ii) it requires shuffling
of bits on those integers (i.e., for computing the inverse of the space filling curve) in constant time, and (iii) the
assumption is that one can combine d such integers into a single integer and perform XOR on their bits in constant
time. The last two assumptions are not reasonable when the input is made out of floating point numbers.

Further research. In low dimensions, the ANN problem seems to be essentially solved both in theory and practice
(such proclamations are inherently dangerous, and should be taken with a considerable amount of healthy skepticism).
Indeed, for ε > 1/ log1/d n, the current data structure of Theorem 5.3.2 provides logarithmic query time. Thus, ε has
to be quite small for the query time to become bad enough that one would wish to speed it up.

Main directions for further research seem to be on this problem in higher dimensions, and solving it in other
computation models.

Surveys. A survey on approximate nearest neighbor search in high dimensions is by Indyk [Ind04]. In low dimen-
sions, there is a survey by Arya and Mount [AM04].



Chapter 6

Tail Inequalities

“Wir müssen wissen, wir werden wissen” (We must know, we shall know)
– David Hilbert.

6.1 Tail Inequalities

6.1.1 The Chernoff Bound — Special Case
Theorem 6.1.1 Let X1, . . . , Xn be n independent random variables, such that Pr[Xi = 1] = Pr[Xi = −1] = 1

2 , for
i = 1, . . . , n. Let Y =

∑n
i=1 Xi. Then, for any ∆ > 0, we have

Pr[Y ≥ ∆] ≤ e−∆2/2n.

By the symmetry of Y , we get the following:

Corollary 6.1.2 Let X1, . . . , Xn be n independent random variables, such that Pr[Xi = 1] = 1/2 and Pr[Xi = −1] =

1/2, for i = 1, . . . , n. Let Y =
∑n

i=1 Xi. Then, for any ∆ > 0, we have Pr
[
|Y | ≥ ∆

]
≤ 2 exp

(
−∆2/2n

)
.

Corollary 6.1.3 Let X1, . . . , Xn be n independent coin flips, such that Pr[Xi = 0] = Pr[Xi = 1] = 1/2, for i = 1, . . . , n.
Let Y =

∑n
i=1 Xi. Then, for any ∆ > 0, we have Pr[|Y − n/2| ≥ ∆] ≤ 2 exp

(
−2∆2/n

)
.

6.1.2 The Chernoff Bound — General Case

Theorem 6.1.4 For any δ > 0, we have Pr
[
X ≥ (1 + δ)µ

] ≤
(

eδ

(1 + δ)1+δ

)µ
.

Or in a more simplified form, for any δ ≤ 2e − 1,

Pr
[
X ≥ (1 + δ)µ

] ≤ exp
(
−µδ2/4

)
, (6.1)

and
Pr

[
X ≥ (1 + δ)µ

] ≤ 2−µ(1+δ), (6.2)

for δ ≥ 2e − 1.

45
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Values Probabilities Inequality Ref
−1,+1 Pr[Xi = −1] = Pr[Y ≥ ∆] ≤ e−∆2/2n Theorem 6.1.1

Pr[Xi = 1] = 1
2 Pr[Y ≤ −∆] ≤ e−∆2/2n Theorem 6.1.1

Pr[|Y | ≥ ∆] ≤ 2e−∆2/2n Corollary 6.1.2

0, 1
Pr[Xi = 0] =

Pr[Xi = 1] =

1
2

Pr
[∣∣∣Y − n

2

∣∣∣ ≥ ∆
]
≤ 2e−2∆2/n Corollary 6.1.3

0,1
Pr[Xi = 0] = 1− pi

Pr[Xi = 1] = pi
Pr

[
Y > (1 + δ)µ

]
<
(

eδ
(1+δ)1+δ

)µ
Theorem 6.1.4

For δ ≤ 2e − 1 Pr
[
Y > (1 + δ)µ

]
< exp

(
−µδ2/4

)
Theorem 6.1.4

δ ≥ 2e − 1 Pr
[
Y > (1 + δ)µ

]
< 2−µ(1+δ)

For δ ≥ 0 Pr
[
Y < (1 − δ)µ] < exp

(
−µδ2/2

)
Theorem 6.1.5

Xi ∈
[
ai, bi

] The Xis have
arbitrary
independent
distributions

Pr
[∣∣∣∣Y − µ

∣∣∣∣ ≥ η
]
≤

2 exp
(
− 2 η2

∑n
i=1(bi−ai)2

) Theorem 6.1.6

Table 6.1: Summary of Chernoff type inequalities covered. Here we have n variables X1, . . . , Xn, Y =
∑

i Xi and
µ = E[Y].

6.1.2.1 The Chernoff Bound — General Case — The Other Direction

Theorem 6.1.5 Let X1, . . . , Xn be independent Bernoulli trials, where Pr[Xi = 1] = pi, and Pr[Xi = 0] = qi = 1 − pi,
for i = 1, . . . , n. Furthermore, let X =

∑b
i=1 Xi and µ = E[X] =

∑
i pi. We have the following

Pr
[
X < (1 − δ)µ] < e−µδ

2/2.

Theorem 6.1.6 (Hoeffding’s inequality.) Let X1, . . . , Xn be independent random variables, where Xi ∈
[
ai, bi

]
, for

i = 1, . . . , n. Then, for the random variable S = X1 + · · · + Xn, and any η > 0, we have

Pr
[∣∣∣∣S − E[S ]

∣∣∣∣ ≥ η
]
≤ 2 exp

(
− 2 η2
∑n

i=1(bi − ai)2

)

6.2 Bibliographical notes
The exposition here follows more or less the exposition in [MR95]. The special symmetric case (Theorem 6.1.1) is
taken from [Cha01], although the proof is only very slightly simpler than the generalized form, it does yield a slightly
better constant, and it would be useful when discussing discrepancy.

An orderly treatment of probability is outside the scope of our discussion. The standard text on the topic is the
book by Feller [Fel91]. A more accessible text might be any introductory undergrad text on probability, in particular
[MN98] has a nice chapter on the topic.

The proof of Hoeffding’s inequality follows (roughly) the proof provided in Carlos Rodriguez’s class notes (which
are available online). There are generalization of Hoeffding’s inequality to considerably more general setups, see
Talagrand’s inequality [AS00].
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